
TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 13/19 pp585-593
Volume 12, Number 5, October 2007

Memory Efficient String Matching Algorithm for
Network Intrusion Management System*

YU Jianming (余建明)1,2, XUE Yibo (薛一波)2,3, LI Jun (李 军)2,3,**

1. Department of Automation, Tsinghua University, Beijing 100084, China;
2. Research Institute of Information Technology, Tsinghua University, Beijing 100084, China;

3. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University,
Beijing 100084, China

Abstract: As the core algorithm and the most time consuming part of almost every modern network intrusion

management system (NIMS), string matching is essential for the inspection of network flows at the line

speed. This paper presents a memory and time efficient string matching algorithm specifically designed for

NIMS on commodity processors. Modifications of the Aho-Corasick (AC) algorithm based on the distribution

characteristics of NIMS patterns drastically reduce the memory usage without sacrificing speed in software

implementations. In tests on the Snort pattern set and traces that represent typical NIMS workloads, the

Snort performance was enhanced 1.48%-20% compared to other well-known alternatives with an automa-

ton size reduction of 4.86-6.11 compared to the standard AC implementation. The results show that special

characteristics of the NIMS can be used into a very effective method to optimize the algorithm design.

Key words: string matching; network intrusion management system (NIMS); Aho-Corasick (AC) algorithm

Introduction

Network intrusion management systems (NIMSs) are
fundamental security applications that are growing in
popularity in various network environments. The heart
of almost every modern NIMS has a string matching
algorithm. The NIMS uses string matching to compare
the payload of the network packet and/or flow against
the pattern entries of intrusion detection rules[1,2].

String matching requires significant memory and
time costs. For example, the string matching routines
in Snort account for up to 70% of the total execution
time and 80% of the instructions executed on real
traces[3]. The size of the string matching data structure

is more than 150 MB when using the Aho-Corasick
(AC) algorithm[4] and the Snort rule set distributed on
July 27, 2005. Moreover, as the number of potential
threats and their associated patterns continues to grow,
the memory and time costs of string matching are
likely to increase as well.

These challenges motivate research on the design of
string matching algorithms specific to NIMS applica-
tions[5-12]. However, most previous algorithms have not
utilized the specific characteristics of NIMS patterns to
improve the string matching performance. The E2xB[8]
algorithm utilized the characteristics of NIMS input
based on the observation that the input size is relatively
small (on the order of packet size) and the expected
matching probability is also small (which is common
in network intrusion detection system (NIDS)
environments).

Hardware applications have also been proposed in-
cluding field programmable gate array (FPGA) and
application specific integrated circuits (ASIC)[13-20].

﹡

﹡﹡

Received: 2005-12-23; revised: 2006-06-30
Supported by the Juniper Research Grant and Intel IXA Univer-
sity Program
To whom correspondence should be addressed.
E-mail: junl@tsinghua.edu.cn; Tel: 86-10-62796400

Tsinghua Science and Technology, October 2007, 12(5): 585-593 586

The hardware methods can certainly achieve higher
string matching performance, but the rule set cannot be
easily updated, especially with the ASIC method.
Software algorithms are less expensive and more flexi-
ble. With special-purpose, programmable chips tailored
to network devices such as network processors (NPs),
software algorithms can also achieve high performance
and can combine the low cost and flexibility of com-
modity processors with the speed and scalability of
custom silicon (ASIC chips).

In this work the characteristics of NIMS patterns
are used to design a faster string matching algorithm
that takes less memory. An improved AC algorithm,
the character indexed AC (CIAC), was developed to
dramatically reduce the memory requirement.

1 Snort and String Matching
1.1 Snort

Snort is the most popular open source network intru-
sion detection system and its detection model is used
for reference by many commercial products.

Snort captures packets from a network interface
which are preprocessed before sending to the detection
engine. The preprocessing includes layer three IP
fragment reassembly, layer four transmission control
protocol (TCP) session reconstruction, and so forth.
The detection engine checks packet payloads against
the intrusion detection rules. If one or more rules
match, an attack is detected and the corresponding re-
sponse functions are launched.

The detection rules form a rule set with all the pat-
tern entries of the rules forming a pattern set. For
newer versions above Snort version 2.0, the detection
rules are divided into many groups, referred to as sub-
rule sets in this paper. The pattern entries of each sub-
rule set form a sub-pattern set. For example, the TCP
and user datagram protocol (UDP) rules are divided
into sub-rule sets by the source and destination port
numbers. When a TCP or UDP packet arrives, its des-
tination and source port number are used to find the
appropriate sub-rule sets to be checked. Then a string
matching algorithm, such as AC, is used to compare
the packet payload with the corresponding sub-pattern
sets. If there are matching patterns, the rules that con-
tain the matching patterns are checked to confirm
whether an attack is occurring.

1.2 String matching algorithm

String matching consists of finding one, or more gen-
erally, of all the occurrences of a search string in an in-
put string. In NIMS applications, the pattern is the
search string, while the payload is the input string. If
more than one search string simultaneously matches
against the input string, this is called multiple pattern
matching. Otherwise, it is called single pattern matching.
1.2.1 Boyer-Moore (BM) algorithm
The BM algorithm[21] is the most well-known single
pattern matching algorithm. The BM algorithm utilizes
two heuristics, bad character and good suffix, to reduce
the number of comparisons. Both heuristics are trig-
gered on a mismatch. The BM algorithm takes the far
most shift caused by the two heuristics.

Horspool proposed a variation of the BM algorithm,
the BM-Horspool (BMH) algorithm[22], which utilizes
only an improved bad character heuristic. BMH is
simpler to implement than BM, which preserves the
average performance of BM.
1.2.2 Maximum weighted matching (MWM) algo-

rithm
The MWM algorithm[23] uses the bad character heuris-
tic like the BM algorithm but with a two-byte shift ta-
ble. The MWM algorithm also performs a hash on the
two-byte prefix of the current substring of the input
string to index into a group of search strings. The
MWM algorithm can efficiently deal with large
amounts of search strings. However, its performance
depends on the length of the shortest search string and
the characteristic of the input string.
1.2.3 AC_BM and SBMH algorithms
The set-wise Boyer-Moore-Horspool (SBMH) algo-
rithm[5] is regarded as the first NIDS-specific string
matching algorithm. This algorithm adopts heuristics
like BM to simultaneously search for multiple search
strings. Coit et al.[6] independently proposed a similar
algorithm called AC_BM.
1.2.4. E2xB algorithm
The E2xB algorithm[8] is an exclusion-based algorithm
specific to NIDS applications. This algorithm is based
on the observation that if there is at least one character
of the search string that is not contained in the input
string, then the search string is not a substring of the
input string. E2xB first checks the input string for miss-
ing fixed size substrings of the search string. If all the
substrings of the search string can be found, a standard

Download	English	Version:

https://daneshyari.com/en/article/865890

Download	Persian	Version:

https://daneshyari.com/article/865890

Daneshyari.com

https://daneshyari.com/en/article/865890
https://daneshyari.com/article/865890
https://daneshyari.com/

