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a b s t r a c t

Regional scale quantitative invasion risk analyses are needed to allow early detection and rapid response
in order to effectively control the spread of exotic invasion. Most of the current invasion risk analyses are
qualitative and ad hoc based. In this study, we used a spatial statistics based framework to assess the
invasion risks of hemlock woolly adelgid (Adelges tsugae) with the following major steps: (1) invasion
probability was first predicted by two widely used spatial statistics tools, maximum entropy (Maxent)
and Mahalanobis distance (MD), based on known adelgid infestation locations and a set of environmental
and anthropogenic related factors; (2) an ensemble of the above two models and a multi-threshold
approach were employed to reduce prediction uncertainties; and (3) a spatial hotspot analysis were
applied to enhance invasion prevention and management decision making. Among the factors investi-
gated, variables representing corridors (e.g., trails and railroads) that are inadvertently spreading adelgid
were important for the prediction of adelgid invasion. Large portion of the hemlock forests in the study
area had a high adelgid invasion probability. The hotspot analysis based on the ensemble model showed
three major clustered areas with high adelgid infestation probability. Our study demonstrated the feasi-
bility of regional-scale quantitative invasion risk assessment with the application of a spatial statistics
based framework, which can be used for effective and proactive invasion prevention and management.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Invasion of exotic insects can be devastating, resulting in signif-
icant economic loss (Pimentel et al., 2005) and ecosystem degrada-
tion (Simberloff et al., 2012). To minimize the impact and slow or
stop the invasion of exotic species, especially at the invasion fron-
tier, an effective early detection and rapid response (EDRR) system
is needed (Chornesky et al., 2005; Hulme, 2012). Early detection is
critical for increasing the likelihood of eradication or to mitigate
the impacts of invasive species. But early detection of exotic inva-
sions can be challenging, especially for rapidly dispersing, cryptic
species such as the hemlock woolly adelgid (HWA) (Adelges tsugae),
a small, highly mobile pest. Monitoring areas of high invasion risk
will increase the likelihood of detecting newly invading popula-
tions (Lodge et al., 2006). Most often invasion risk analyses are
qualitative, and are ad hoc based. The effectiveness of an EDRR sys-
tem depends profoundly on the accuracy of quantitative prediction
of the invasion dispersal process (Lodge et al., 2006; Hulme, 2012).
Here we demonstrate the use of spatial analysis to quantitatively

assess high risk areas of adelgid invasion in central Appalachia
(southeastern Kentucky) for proactive invasive insect
management.

The hemlock woolly adelgid is highly invasive in eastern North
America, where natural enemies are unable to regulate populations
(Wallace and Hain, 2000) and eastern hemlock (Tsuga Canadensis)
is especially susceptible (McClure, 1992). Following its 1951 intro-
duction in Virginia there was a lag time of approximately 30 years
with minimal range expansion. However, in the 1980s infestations
expanded northward along the east coast, exploiting the large con-
tiguous tracts of hemlock forest common in the northeast. More re-
cently adelgid range expansion has been southward, where eastern
hemlock is more confined to moist coves, higher elevations and
north-facing slopes (Godman and Lancaster, 1990; Ward et al.,
2004). Although the adelgid was not reported in Kentucky until
March 2006, its infestations had been recorded in 22 Kentucky
County by 2012, primarily in the southeast (USDA, 2012).

Eastern hemlock is a foundation species in eastern North
America and is prominent in riparian areas throughout central
and southern Appalachia (Vandermast and Van Lear, 2002; Adkins
and Rieske, 2013). Its dense coniferous canopy helps modulate air,
soil, and stream temperatures (Godman and Lancaster, 1990; Ford
and Vose, 2007). Eastern hemlock helps regulate nutrient cycling
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and decomposition rates (Yorks et al., 2003). It is vital for
maintaining stream quality, provides habitat for hemlock-depen-
dent birds, and provides seasonal habitat for grouse, turkey, moose,
deer, and other wildlife (Shriner, 2001; Snyder et al., 2002; Keller,
2004; Ross et al., 2004; Ford and Vose, 2007). Loss of eastern hem-
lock will cause changes in vegetation composition and structure;
as hemlock trees die, light penetration to the forest floor increases,
leading to a larger percent of ground cover to be occupied by
vascular plants, including potentially invasive plant species. Increased
light penetration also creates suitable habitat for less shade-toler-
ant tree species such as black birch (Betula lenta) and red maple
(Acer rubrum) (Catovsky and Bazzaz, 2000; Yorks et al., 2003;
Spaulding and Rieske, 2010). This shift in vegetative dominance
will have serious consequences for native biota, leading to exten-
sive and permanent changes in community composition. Further-
more, the western edge of the contiguous range of eastern
hemlock lies in eastern Kentucky (Little Jr., 1971), where it grows
in isolated clusters usually confined to moist coves, higher eleva-
tions and north-facing slopes (Godman and Lancaster, 1990). These
peripheral populations are often critically important in conserving
threatened and endangered species (Channell and Lomolino, 2000;
van Rossum et al., 2003); an effective monitoring approach may
play a crucial role in the preservation of eastern hemlock.

Predicting invasion risk for areas that are susceptible to adelgid
establishment would be a powerful tool in the battle against this
aggressive invader. Since the adelgid is small, highly mobile, and
cryptic, detection is difficult. Absence data are not considered reli-
able, which is a common problem in species distribution modeling
and several methods have been developed to address this (Elith
et al., 2006). One option is to use a model based on presence-only
data, which may be less accurate than presence–absence models,
but is found to be robust in species distribution modeling even
with a small sample of presence records available (Elith et al.,
2006; Pearce and Boyce, 2006). Maximum entropy and Mahalan-
obis distance are two presence-only models that have shown high
performance among the existing model classes (Farber and
Kadmon, 2003; Elith et al., 2006; Phillips et al., 2006; Tsoar et al.,
2007). These two models have been used to successfully predict
the habitat suitability of a wide range of taxa (e.g., Browning
et al., 2005; Dudik et al., 2007; Fei et al., 2012; Liang et al., 2013).

The maximum entropy species distribution model (Maxent;
Phillips et al., 2006; Elith et al., 2011) uses presence data to pro-
duce a continuous probability of relative habitat suitability. Its
name refers to the fact that the resulting estimation of the proba-
bility distribution is that which is most uniform—in other words,
has maximum entropy (Pearson et al., 2007). This program gener-
ates randomly selected background environmental samples from
the study area. Maxent is similar to generalized linear models
(GLMs) and generalized additive models (GAMs), two common
techniques which require absence data or background samples
that represent true absences, except that Maxent does not inter-
pret randomly selected background samples used in the modeling
process as absence data (Phillips et al., 2006).

Mahalanobis distance (MD; Jenness, 2009) is a multivariate sta-
tistic based on the ecological niche concept (Hutchinson, 1957)
that can be used to map the probability of use or the probability
of occupancy of a location by an organism through determining
the similarity of habitats (Rotenberry et al., 2002; Tsoar et al.,
2007). A hyper-elliptical envelope of variables is calculated using
the mean vectors and inverse of the covariance matrix of the vari-
ables, the center representing the optimal habitat of the species
based on calibration (training) data. The distance from the center
of the hyper-ellipsoid to a point representing a geographic location
with a particular set of habitat conditions is known as the Maha-
lanobis distance for that particular location; the shorter the dis-
tance, the more likely the location will be suitable for the species

(Watrous et al., 2006). MD differs from Maxent in that it does
not require background environmental samples to use in the mod-
eling, except for assessing model accuracy.

Utilizing these approaches to generate hemlock woolly adelgid
susceptibility maps would create an invaluable tool for land man-
agers to mitigate the impacts of invading adelgid populations. To
reduce prediction uncertainties resulted from a specific model
algorithm, consensus forecasting with the ensemble of different
models is highly recommended because predictions that are con-
sistent across models will be more reliable than any individual
model (Araújo and New, 2007; Comte and Grenouillet, 2013). To
reduce prediction uncertainties resulted from a single cut-off
threshold, we employed a multi-threshold approach to better pres-
ent the different levels of invasion risks based on the model predic-
tions (Fei et al., 2012). Additionally, application of spatial statistics
such as hotspot analysis can further identify and quantify areas
with high invasion risks (Fei, 2010; Catford et al., 2011). This infor-
mation could be used to prioritize conservation measures, e.g.,
identification of areas to survey for potential new infestations or
determining optimal locations for management efforts. We hope
that our spatial statistics based framework as demonstrated in this
study will be found useful in additional invasive species manage-
ment and nature resource conservation tasks.

2. Methods

The study area covered approximately 27,006 km2 of eastern
Kentucky (38.29–36.58�N, 81.96–84.83�W; Fig. 1) of which
approximately 2300 km2 were suitable for eastern hemlock cover
(Clark et al., 2012). This region lies within the Eastern Coal Field
physiographic region of the Cumberland Plateau. This mountain-
ous area is geologically composed of sandstone, shale, and siltstone
(McDowell, 1986) and ranges in elevation from 154 to 1259 m.
Average monthly temperature ranges from 1.1 �C in January to
23.9 �C in July and average monthly precipitation ranges from
8.1 cm in October to 13.1 cm in May (Jackson Carroll AP, 1971-
2000 data; National Oceanic and Atmospheric Administration,
2002). The dominant forest type is mixed mesophytic consisting
primarily of pine-oak dominated communities (Braun, 1950;
Turner et al., 2008).

Hemlock woolly adelgid infested sites within the study area
were surveyed and recorded with global positioning system
(GPS) receivers between 2006 and 2011 using both a systematic
2 � 2 km grid survey and opportunistic random surveys. Both ap-
proaches involved visual assessment of accessible branches. Sites
with observed adelgid presence (N = 142) were used in the model
construction (Fig. 1). Infestation points were randomly divided into
subsets of training (n = 108) and testing (n = 34) data, respectively,
with a partition ratio of 0.24 for the testing subset (Huberty, 1994).
The partition ratio was calculated using an empirical formula
[1 + (p�1)1/2]�1, where p is the number of predictor variables, as
prescribed in Huberty (1994). For both Maxent and Mahalanobis
distance modeling, 10 replicate runs were made with training/test-
ing data split randomly in the specified ratio each time. The testing
data points were withheld from model construction and subse-
quently used for model accuracy evaluation. Eleven environmental
layers covering a range of natural and socioeconomic factors
potentially associated with adelgid introductions and spread were
derived for use as predictor variables in the models (Table 1). All
layers were converted to raster format with a cell-size of 30 m
and the projection set to Kentucky Single Zone State Plane. Wind
power maps were resampled using bilinear interpolation; slope
and aspect were calculated from a digital elevation model (DEM);
hemlock distribution was assessed according to probability predic-
tion (Clark et al., 2012). For Maxent modeling we used Maxent
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