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ABSTRACT

Objectives: Body fatness is widely assumed to be regulated by a lipostatic set-point system, which has evolved in response to trade-offs in the
risks of mortality. Increasing fatness makes the risk of starvation lower but increases the risk of predation. Yet other models are available. The aim
of this work is to evaluate using mathematical modeling whether set-point systems are more likely to evolve than the alternatives.
Methods: I modeled the trade-off in mortality risks using a simple mathematical model, which generates an optimum level of fatness that is
presumed to be the driver for the evolution of a set-point. I then mimicked the likely errors in this optimum level, that derive from the variation in
the component parameters of the mortality curves using Markov Chain Monte Carlo (MCMC) simulation by Bayesian inference Using Gibbs
Sampling (BUGS).
Results: The error propagation generated by the simulations showed that even very small errors in the model parameters were magnified
enormously in the location of the optimum fatness level. If the model parameters had coefficients of variation of just 1% then the coefficient of
variation in the optimum level of fatness was between 20 and 90%. In that situation, a set-point centered at the mathematical optimum from the
component curves would be at the correct level of fatness that minimizes mortality, and hence maximizes fitness, on less than 8% of occasions.
Conclusions: Set-point regulation of body fatness is hence highly unlikely to evolve where there is any realistic level of variation in the pa-
rameters that define mortality risks. Using further MCMC modeling, I show that a dual-intervention point system is more likely to evolve. This
mathematical simulation work has important implications for how we interpret molecular work concerning regulation of adiposity.Q2

� 2017 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. INTRODUCTION

It is widely assumed that body fatness is regulated by a lipostatic
regulatory system, as originally proposed by Kennedy [1]. By this
model a signal from the body reflecting the level of stored fat is
compared to a set-point in the brain, and deviations of the body fat
from the set-point result in compensatory responses in both energy
intake and expenditure [2e8]. The discovery of leptin [9] provided a
potential molecular reality for the signal reflecting the level of stored
fat. The molecular basis of the lipostatic set-point to which it is hy-
pothetically compared, however, has never been discovered. Set-point
models are not the only possible theoretical way in which body fatness
can be regulated, and various other models are available: including
settling point and dual intervention point models [10]. Moreover,
mathematical models of body fatness changes have called into
question whether animal responses to metabolic perturbations actually
behave as expected from a lipostatic set-point regulation system [11].
How the supposed set point system for body fatness evolved has been
a no less active but largely independent area of enquiry from studies
aiming to elucidate the molecular basis of the system. It has been
suggested that the lipostatic set-point evolves because of two con-
trasting evolutionary pressures relating to mortality consequences of

fat storage [12e14]. One of these pressures favors storage of more
fat. This is generally presumed to be the risk of starvation (but see [15]
for an argument that it is more likely to be disease risk). The starvation
argument is that under conditions of complete failure in the food supply
those individuals storing more fat will survive longer. Hence, storing
more fat reduces the risk of starvation-induced mortality. However,
there is a counteracting pressure which favors storage of less fat. This
has widely been assumed to be the risk of predation. Individuals
storing more fat may be less maneuverable and slower to evade
predators and hence storing more fat increases predation mortality
[13,14].
The tension between these opposing forces then generates an optimal
level of fat storage that minimizes mortality. This situation can be
modeled by a juxtaposition of negative and positive exponential re-
lationships between mortality and fat storage [15]. If the mortality due
to starvation (Ms) follows a negative exponential relationship
Ms¼ ae�bx, where x is fat storage, and mortality due to predation rises
as a positive exponential Mp¼ cegx. Then overall mortality at any given
level of fat storage Mtot ¼ Ms þ Mp and the optimal fat storage level
that minimizes mortality turn out to be analytically defined as

FA ¼ log(ab/cg) / (b þ g). (1)
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This fitness landscape is presumed to provide the selective environ-
ment in which a lipostatic set-point system can evolve, centered
around the point FA. That is, individuals regulating body fatness at
levels that do not coincide with the optimal level FA would suffer
greater mortality; hence, the genes defining these deviant levels of
fatness regulation would be purged from the population. What would
then evolve is a lipostatic set-point regulating fatness at FA. It is my
contention here that such an evolutionary scenario is untenable and
that such set-point regulatory systems for body fatness are unlikely to
evolve (at least by this proposed mechanism).
The problem with such mathematical models is that they assume that
the curves defining the risks of mortality are stable in space and time.
That is, the constants defining the mortality curves (a, b, c and g) are
truly constant. This is extremely unlikely. The curve relating level of
fatness to mortality risk from predation, for example, will likely depend
on the local population of predators and the populations and sizes of
other potential prey. Such variation may make the position of the
optimal fatness unstable and hence make it difficult for a lipostatic set-
point system to evolve. The key question is how much this likely
variation in these parameters would affect the value of FA. If, for
example, changing the parameters up or down by 5% has only minimal
impacts on FA then the optimal solution will be robust to the parameter
estimates and a lipostatic set-point system could still evolve. However,
if FA turns out to be highly variable dependent on the component
parameter variation then this would make evolution of a lipostatic set-
point system unlikely.

2. METHODS

To investigate this question, I used Markov Chain Monte Carlo (MCMC)
simulation by Bayesian inference using Gibbs Sampling (BUGS) (using
the winBUGS software; [16]). I used the mortality trade-off model from
[15], briefly outlined above, as the basis of the simulation. I selected
the values of the model parameters a, b, c, g so as to generate an
optimal body fatness (FA) of 5 units. I will refer to this from now on as
5 g as if we were modeling fat storage in a typical small mammal, but
the units are arbitrary and the model can be applied to any size of
animal. If you are more familiar with human fat storage then you may
prefer to think about the units as kg rather than grams. I then selected
six combinations of the four parameters that reflected different po-
tential mortality landscapes. These combinations are detailed in
Table 1, and the mortality patterns they generate are illustrated in

Figure 1. The scenarios are identified as A to F and involve an esca-
lating dependence of the mortality curves on body fatness. This is
reflected in the fold change in mortality risk from both sources as
fatness increases from 1 to 10 g (Table 1). Hence, in scenario A, the
least sensitive situation, this 10-fold increase in fatness increases
mortality due to predation by a factor of 2.7 but decreases the mortality
from starvation by a factor of 1.9. In contrast, for scenario F, the most
sensitive situation, the 10-fold increase in fatness from 1 to 10 g
resulted in a 36-fold increase in mortality due to predation and a 90-
fold reduction in mortality due to starvation.
I then assumed that variation in the four parameters followed a normal
distribution, with the means defined as in Table 1 and that the standard
deviation of each distribution was defined by a given coefficient of
variation. The winBUGS model specification text is available on
request. The six levels of the coefficients of variation studied included
0.0001%, 0.001%, 0.01%, 0.1%, 1%, and 2%. I applied these equally
to all 4 parameters. That is, I didn’t model the situation where the
coefficients of variation themselves varied between parameters. The
program was allowed to generate initial values based on the distri-
butions. In each condition, I ran 10,000 iterations of the program,
drawing random samples from the respective parameter distributions.
These were then combined in Eq. (1) to generate a sample of the
output variable FA. This resulted in 36 separate output distributions (6
scenarios multiplied by 6 different levels of parameter variation). The
output distributions of FA were then characterized by their means and
standard deviations.
In a second set of simulations, I used the same scenarios to generate
the profile of mortality (Mtot) at different levels of fatness. For this
model, the mortality was simulated by drawing random samples from
the same distributions of the four parameters that define the mortality
curves, but this time instead of calculating FA the program calculated
total mortality (Mtot) as a result of both predation and starvation. I set
the CV of the defining parameters at 1%, and allowed the program to
generate initial values from the starting distributions. The model was
then iterated for 10,000 samples at each of 31 values of body fatness
between 2 and 8 g (at 0.2 g intervals) for all 6 mortality scenarios. The
mean and Monte Carlo standard error for mortality at each fat level was
recorded.

3. RESULTS

As expected, given the assumed normal distributions for the compo-
nent parameter values, the resultant distribution of FA was also roughly
normal. I therefore characterized the distributions based on their co-
efficients of variation and plotted these against the modeled coefficient
of variation in the component parameters (Figure 2). This showed that
when the component parameters had only very low levels of variation
(CV¼ 0.0001 and 0.001%), the coefficient of variation in the output FA
was between 0.16 and 2.0% depending on the mortality conse-
quences of the fat storage. Hence, there was a dramatic impact of even
minute levels of variation in the components on the position of the
optimum fatness. When the variation in the components was higher
(1%), the coefficient of variation in the optimum FA varied between 20
and 90%. The gradients of exponential fits to these relationships all
had exponents around 1.2. The intercepts (equal to the coefficients at
component variances of 1%) were strongly linked to the average of the
mortality impacts of the initial relationships (Figure 3). In other words,
when the scenario was strongly sensitive to mortality effects the op-
timum was less variable. Nevertheless, even when the average mor-
tality effect was 60-fold (Scenario F), 1% coefficients of variation in the
4 component parameters led to a 20% coefficient of variation in FA.

Table 1 e Six different scenarios that were used to model evolution of set-
points. The scenarios are labeled A to F and are ordered by the increasing
sensitivity of mortality to changes in body fatness. Sensitivity is expressed
as the fold change in mortality due to starvation (Ms) and predation (Mp) that
accompanies a 10 fold change in the level of stored fat. The model involves
contrasting positive and negative exponentials and generates an optimal
fatness (FA). Parameters of the model (a, b, c, g) for each scenario are
shown.

Scenario A B C D E F

Sensitivity to
Ms 1.9 6.04 9.48 14.9 23.3 90.0
Mp 2.7 7.99 5.03 6.0 11.1 36.6
Mean 2.3 7.02 7.26 10.4 17.2 63.3
Parameters
a 0.53 1.0 1.0 1.0 1.5 2.5
b 0.07 0.2 0.25 0.3 0.35 0.5
c 0.123 0.1 0.16 0.123 0.087 0.035
g 0.117 0.231 0.18 0.2 0.27 0.4
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