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Abstract Introduction: The aim of this study was to build a random forest classifier to improve the diagnostic
accuracy in differentiating dementia with Lewy bodies (DLB) from Alzheimer’s disease (AD) and to
quantify the relevance of multimodal diagnostic measures, with a focus on electroencephalography
(EEG).
Methods: A total of 66 DLB, 66 AD patients, and 66 controls were selected from the Amsterdam
Dementia Cohort. Quantitative EEG (qEEG) measures were combined with clinical, neuropsycho-
logical, visual EEG, neuro-imaging, and cerebrospinal fluid (CSF) data. Variable importance scores
were calculated per diagnostic variable.
Results: For discrimination between DLB and AD, the diagnostic accuracy of the classifier was
86%. Beta power was identified as the single most important discriminating variable. qEEG increased
the accuracy of the other multimodal diagnostic data with almost 10%.
Discussion: Quantitative EEG has a higher discriminating value than the combination of the other
multimodal variables in the differentiation between DLB and AD.
� 2016 Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Background

Alzheimer’s disease (AD) and dementia with Lewy
bodies (DLB) are the two most common forms of demen-
tia in the aging population [1,2]. DLB and AD have
several overlapping characteristics, making differential
diagnosis in clinical practice at times difficult [3].
Compared to AD, consensus criteria [1] in DLB have
moderate sensitivity [4,5]. Accurate diagnosis of DLB
and AD is essential for patient guidance and appliance
of possible early treatment and prevention strategies [6].

Therefore, disease-specific biomarkers from cerebrospinal
fluid (CSF) and neuro-imaging are increasingly used, but
these diagnostic tests can be costly and are not always
available [5,7]. Furthermore, the frequent presence of
concomitant AD pathology in DLB patients renders
amyloid markers and magnetic resonance imaging (MRI)
less discriminative [5,8]. In contrast, electroencephalo-
graphy (EEG) has been proposed as a low cost and
readily available diagnostic tool to distinguish between
DLB and AD [9,10]. At present, in a clinical setting,
data from patient history and above-mentioned diagnostic
tests are weighted differently in each individual patient
to make a diagnosis [11]. The exact contribution of
the (combinations of) EEG and other diagnostic tests
to the differential diagnosis of DLB and AD remains
unclear.
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Automated classification algorithms can directly provide
the most relevant diagnostic variables and estimate their
relative importance in classifying cognitive impairment,
which can improve diagnostic efficiency [12,13].
Ensemble-learning methods construct automated classifica-
tion algorithms that can learn from and predict data by build-
ing a model in the form of input-output relationships of
variables (i.e., features in classification algorithms) [14].
Random forest is one such algorithm, developed by L. Brei-
man, and based on the principle of decision-tree learning
[15]. In the field of dementia, ensemble-learning methods
have mainly been studied to classify patients with AD
[13], whereas very little evidence is available on the auto-
mated discrimination between DLB and AD [12] or on the
combination of different diagnostic modalities in an auto-
mated classifier.

This study aimed to build a random forest classifier to
discriminate between DLB, AD, and controls and to quantify
the importance of (combinations of) different types of diag-
nostic features (i.e., clinical, neuropsychological, EEG, CSF,
and neuro-imaging data), with a specific focus on the role of
EEG.

2. Methods

2.1. Study population

A total of 66 probable DLB patients, 66 probable AD pa-
tients, and 66 subjects with subjective cognitive decline
(SCD) were selected from the Amsterdam Dementia Cohort
[11]. The groups were matched on group level for age and
gender. All subjects were referred to the Alzheimer Center
of the VU University Medical Center (VUmc) in Amster-
dam, The Netherlands, between September 2003 and June
2010. Standardized dementia diagnostic work-up included
neuropsychological assessment, lumbar puncture, brain
MRI, and resting-state EEG. All subjects gave written
informed consent for storage and use of their clinical data
for research purposes. The Medical Ethics Committee of
the VUmc approved this study. A clinical diagnosis and
treatment plan were made by consensus in a weekly multi-
disciplinary meeting [11]. Probable AD was diagnosed ac-
cording to the NINCDS-ADRDA criteria [2], and probable
DLB was diagnosed according to consensus guidelines [1].
Subjects were labeled as SCD when they experienced and
presented with cognitive complaints, but diagnostic work-
up was not abnormal and no other neurological or psychiat-
ric disorder known to cause cognitive problems could be
diagnosed [11]. These subjects were included as controls.

The EEG-data set of the present study population has been
previously analyzed focusing on functional and directed con-
nectivity and network topology in DLB and AD [16,17].

2.2. Feature selection

All the non-EEG features (Table 1) for the classification
algorithm were manually selected from the diagnostic

work-up based on availability, and their correspondence
with the clinical criteria of DLB and AD [1,2].

2.2.1. Clinical features
Visual hallucinations were assessed with the Neuropsy-

chiatric Inventory (NPI) [18]. Cognitive functions were as-
sessed using a standardized test battery [11]. From this, the
Mini-Mental State Examination (MMSE) was used as a
measure of global cognitive function [19], Trail Making
Test part A (TMT-A) as a measure of motor speed [20],
the Visual Association Test (VAT) as a measure of episodic
memory [21], and the forward and backward condition of the
Digit Span as a measure of attention [22].

2.2.2. Biomarkers
CSF was collected by lumbar puncture [11]. Amyloid-b

1–42 (Ab42), total tau, phosphorylated tau (p-tau), and a ratio
of tau to Ab42 were included as features [23]. From neuro-
imaging, medial temporal lobe atrophy, global cortical atro-
phy, and white-matter hyperintensities on MRI were
included as features [11].

2.2.3. EEG recordings
As part of the diagnostic work-up, all subjects underwent

a 20-minute no-task, resting-state EEG recording with OSG
digital equipment (Brainlab; OSG B.V. Belgium), according
to the international 10–20 system [17].

EEGs of all subjects were rated according to a standard
visual rating scheme [24]. The visual rating includes the
severity of EEG abnormalities on a 4-point rating scale,
and the presence of focal, diffuse, and epileptiform abnor-
malities [11,24]. In addition, all EEGs were assessed for
the presence of frontal intermittent rhythmic delta activity
[9,10].

Subsequently, four artifact-free epochs, recorded in an
awake state with eyes closed, were visually selected for
each subject. Data were converted to American Standard
Code for Information Interchange (ASCII) format, and
four epochs of 4096 samples per subject (i.e., approximately
4 ! 8 second EEG data per subject, sufficient to perform
qEEG analyses [25]) were loaded into the BrainWave soft-
ware for further analysis (BrainWave, version
0.9.152.2.17, C.J. Stam; available for download at http://
home.kpn.nl/stam7883/brainwave.html).

The machine learning module of BrainWave was used to
create a data file containing all the qEEG features shown in
Table 1. Phase transfer entropy (PTE) was used as a measure
for effective connectivity between EEG channels. PTE mea-
sures the strength and direction of phase-based functional
connectivity between interacting oscillations [26]. In addi-
tion, minimum spanning tree (MST) measures (i.e., highest
degree, leaf number, and tree hierarchy) were used as a rep-
resentation of functional network topology. MST is a unique
acyclic subnetwork that connects all nodes in a network such
that only the strongest connections in the network are
included without forming loops [27].
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