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h i g h l i g h t s

� A new sliding window algorithm for averaging trains of MUAPs has been tested.
� It performed better than relevant averaging algorithms with normal, myopathic and neurogenic

signals.
� The algorithm can be of service for the quantitative analysis of MUAP waveforms.

a b s t r a c t

Objective: To evaluate the performance of a recently proposed motor unit action potential (MUAP) aver-
aging method based on a sliding window, and compare it with relevant published methods in normal and
pathological muscles.
Methods: Three versions of the method (with different window lengths) were compared to three relevant
published methods in terms of signal analysis-based merit figures and MUAP waveform parameters used
in the clinical practice. 218 MUAP trains recorded from normal, myopathic, subacute neurogenic and
chronic neurogenic muscles were analysed. Percentage scores of the cases in which the methods obtained
the best performance or a performance not significantly worse than the best were computed.
Results: For signal processing figures of merit, the three versions of the new method performed better
(with scores of 100, 86.6 and 66.7%) than the other three methods (66.7, 25 and 0%, respectively). In terms
of MUAP waveform parameters, the new method also performed better (100, 95.8 and 91.7%) than the
other methods (83.3, 37.5 and 25%).
Conclusions: For the types of normal and pathological muscle studied, the sliding window approach
extracted more accurate and reliable MUAP curves than other existing methods.
Significance: The new method can be of service in quantitative EMG.
� 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The analysis of motor unit action potential (MUAP) is one of the
fundamental tests in routine clinical neurophysiology. Electromyo-
graphy (EMG) signals are recorded intramuscularly with conven-
tional concentric needle electrodes. These signals usually contain
several MUAP trains. Manual, semi or completely automatic tech-
niques (Nandedkar and Barkhaus, 2002; Merletti and Parker,
2004) are used for decompose EMG signals into different MUAP
trains. From each MUAP train a representative waveform is formed
(Malanda et al., 2015) and characterized with clinically useful
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parameters (Stålberg et al., 1986; Zalewska and Hausmanowa-
Petrusewicz, 1995; Nandedkar and Barkhaus, 2002; Kimura,
2002). For diagnostic evaluation, getting a reliable and representa-
tive MUAP waveform is thus an essential goal of quantitative EMG.

Noise and artifacts from different sources can distort MUAP
waveforms. Averaging methods have been designed for obtaining
representative waveforms fromMUAP trains. Conventional averag-
ing methods based on the mean of samples are noticeably sensitive
to noise and artifacts, particularly, to the interference of potentials
from different motor units (Malanda et al., 2016). Furthermore,
such methods sometimes perform excessive smoothing of the
resulting curves, which can lose morphological details of poten-
tially useful physiological implication. Finally, these methods give
rise to amplitude bias when alignment errors are present (Malanda
et al., 2015; Sörmo and Lagunas, 2005). Methods based on the
median are more robust, but tend to produce ragged waveforms
(Malanda et al., 2015).

Robust methods of averaging are especially relevant in auto-
matic extraction of MUAP trains by means of multi-MUP systems
(Stålberg et al., 1995; Nandedkar and Barkhaus, 1995), which are
designed to reduce the time of MUAP extraction (and consequently
patient discomfort), being able to obtain several MUAP trains (gen-
erally up to six, in commercial systems) from each point of needle
insertion. Patients are asked to perform moderate voluntary mus-
cular contractions, so that several motor units are activated. The
presence of different MUAP trains in the recordings leads to fre-
quent superimpositions of potentials, whose waveforms are conse-
quently distorted to some extent, making further demands on the
averaging method used to disentangle and extract a representative
waveform.

The building of a waveform that serves as a model or template
for a set of curves in a repetitive signal is a recursive problem in the
field of biomedical signal analysis. Several methods have been put
forward for obtaining such templates from biomedical repetitive
signals of different kind: EMG (i.e, MUAP analysis) (Stålberg and
Antoni, 1983; Nandedkar and Sanders, 1989; Stålberg and Sonoo,
1994; Nandedkar and Barkhaus, 1995), evoked potentials (Hoke
et al., 1984; Mühler and von Specht, 1999; Sörmo and Lagunas,
2005; Leonowicz et al., 2005; Rahne et al., 2008) and electrocardio-
graphy (Leski, 2002). A comprehensive review of these methods
together with a comparative evaluation of a selection of them
was recently published (Malanda et al., 2015).

In 2016, the current authors presented a new method for
obtaining a representative waveform from a train of MUAPs.
Briefly, a window slides along the time axis selecting and averaging
the most similar sections of the potential train within its scope.
From the obtained pieces of potentials, an assembled potential is
generated, that satisfactory represents the waveforms of the MUAP
train. This approach was referred to as Sliding-window selective
averaging (SWSA).

The SWSA approach was compared with a selection of the nine
methods evaluated in the previously-conducted comparative study
(Malanda et al., 2015) and was found to improve on the perfor-
mance of the older methods in terms of the criteria of comparison
(various signal analysis-based merit figures and MUAP waveform
parameters used in the clinical practice). Regarding MUAP wave-
form parameters, the new algorithm outperformed the other
methods evaluated.

The current study extends our previous work to evaluate per-
formance with MUAP recordings from pathological muscles. In
the following section, a description of the materials used in the
study is given. Next, we briefly describe the SWSA method and
the other methods evaluated. Then comes an explanation of the
gold standard and the figures of merit used in comparisons. After
providing a report of the comparative evaluation results and fur-
ther discussion of these results, our final conclusions are given.

2. Methods

2.1. Subjects and signals

For this study we made use of the material used in a previous
work (Rodríguez-Carreño et al., 2010), with the expressed approval
of the Public University of Navarre’s Ethical Committee.
Specifically, we used 313 EMG signals, between 5 and 6 seconds
long, acquired during slight voluntary contractions: 68 signals
were from normal muscles, 105 from myopathic muscles, 27 from
chronic neurogenic muscles and 72 from subacute neurogenic
muscles. The types of muscles and particular neurological diseases
related to these signals can be consulted in the previous reference.
Details about the recording equipment and acquisition set-up can
also be found in that reference.

MUAP trains were extracted from EMG signals using an auto-
matic decomposition procedure (Florestal et al., 2006). The
potentials in the MUAP trains consisted of 50 ms-long EMG signal
epochs. For all the extracted MUAP trains the potentials were seg-
mented from the EMG signals in such a way that their maximal
negative peaks appeared at 40% of the length of the epoch.

Next, the potentials of each MUAP train extracted by the
decomposition algorithm were aligned in the time axis by maxi-
mum correlation (Campos et al., 2000) and in the amplitude axis
by Euclidean distance minimization (Navallas et al., 2006). MUAP
trains with an excessively noisy visual appearance or that yielded
average waveforms with unrealistic MUAP shapes to the eyes of
an expert electromyographer (LG), were considered unacceptable
and discarded for subsequent analysis. MUAPs with satellite poten-
tials were also excluded. All the selected MUAP waveforms were
well-defined above BL activity and had a rise-time lower than 1
ms (most of them lower than 0.5 ms). Finally, MUAP trains with
less than 80 potentials were discarded, as this was set as the min-
imum MUAP train size for the comparative analysis. A total of 218
MUAP trains were accepted for the study: 37 from normal muscles,
69 from myopathic muscles, 64 from subacute neuropathic
muscles and 48 from chronic neurogenic muscles.

2.2. The Sliding-window selective averaging method

The SWSA algorithm starts with the potentials in the MUAP
train already aligned in time and amplitude (Fig. 1A). Then a win-
dow slides along the MUAP time span delimiting intervals of the
set of potentials (Fig. 1A and B). For each time interval, the so-
called median section is calculated as the median of the samples
of all the potentials in the train. The standard deviations of the
amplitude samples of the different potentials in the train are also
obtained and the minimum value across the time samples in the
interval is extracted. Then, the algorithm evaluates potentials with
a small Euclidean distance to the median section. Potentials with
Euclidean distances that are lower than the previously-estimated
minimum standard deviation multiplied by a constant parameter
(g), are selected and averaged. In this way, the algorithm obtains
representative sections for the time intervals under consideration
(Fig. 1C). In the final stage, the representative sections obtained
as the window slid along the MUAP time span are assembled
(Fig. 1D) and averaged to form the final representative waveform.
A complete description of the SWSA algorithm can be found in
the original article in which it is presented and evaluated
(Malanda et al., 2016).

To evaluate the SWSA algorithm, the parameter g is set to 1.0,
while three different values of the window length are considered:
Lw = 50, 150 and 250 samples (i.e., 2.5, 7.5 and 12.5 ms, respec-
tively). These parameter values were chosen, on the basis of results
in the original study (Malanda et al., 2016), in which Lw was tested
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