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A B S T R A C T

Exploring brain networks is an essential step towards understanding functional organization of the brain, which
needs characterization of linear and nonlinear connections based on measurements like EEG or MEG. Conven-
tional measures of connectivity are mostly linear and bivariate. This paper proposes an effective connectivity
measure called Adaptive Neuro-Fuzzy Inference System Granger Causality (ANFISGC). The proposed measure is
based on the symplectic geometry embedding dimension, Adaptive Neuro-Fuzzy Inference System (ANFIS) pre-
dictor, and Granger Causality (GC). It is a powerful predictor that detects both linear and nonlinear causal in-
formation flow. It is not bivariate and thus can distinguish between direct and indirect connections. The
performance of the proposed method is evaluated and compared with those of the Linear Granger Causality
(LGC), Kernel Granger Causality (KGC), combination of Pairwise Granger Causality and Conditional Granger
Causality (PwGC þ CGC), Transfer Entropy (TE), and Phase Transfer Entropy (PTE) methods using simulated and
experimental MEG data. Simulation results show that ANFISGC outperforms the other methods in detecting both
linear and nonlinear connections and, by increasing the coupling strength between nodes, the value of ANFISGC
increases. In the analysis of the time series of the brain sources of epilepsy patients obtained from the MEG inverse
problem, the regions found by ANFISGC were more similar to the clinical findings than those found by the other
methods.

1. Introduction

The human brain is a complex biological system. Exploring the brain
function and analyzing the interactions among its different regions are
challenging tasks. They can be accomplished using MEG and EEG signals
that provide high temporal resolution (in the order of millisecond) but
poor spatial resolution (He et al., 2011). These modalities are suitable for
studying the brain effective connectivity as they provide enough data to
explore the brain dynamics. The effective connectivity deals with the
causal influence of the regions on each other (Greenblatt et al., 2012;
Sakkalis, 2011).

The brain networks may be identified through an investigation of the
brain connectivity. They have clinical applications for neurological dis-
orders (e.g., autism, epilepsy, and Alzheimer's) (Menassa et al., 2018;
Han et al., 2017; Boutros et al., 2015; Amini et al., 2011; Wilke et al.,
2010; Chen et al., 2014). The brain networks of patients and healthy

individuals can be compared to identify abnormalities of the patients'
brains.

A variety of linear effective connectivity criteria have been developed
based on the autoregressive (AR) and multivariate autoregressive
(MVAR) models in the time and frequency domains. They include Linear
Granger Causality (LGC) (Ding et al., 2007), combination of Pairwise
Granger Causality and Conditional Granger Causality (PwGC þ CGC)
(Stramaglia et al., 2014), Partial Directed Coherence (PDC), Generalized
Partial Directed Coherence (GPDC), Directed Transfer Function (DTF),
full frequency Directed Transfer Function (ffDTF), and spectrum
weighted Directed Transfer Function (swDTF) (Gurisko, 2014; Wu et al.,
2011; Siggiridou et al., 2017).

The most widely used measure of linear effective connectivity is LGC.
Based on LGC, time series Y is considered as the cause of time series X if
incorporating the past information of Y improves the prediction of X from
its past (Ding et al., 2007; Khadem and Hossein-Zadeh, 2014). In details,
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to investigate a causal relation from Y to X, a model must be created to
predict time series X using the lagged samples of X and Y time series.
Similarly, a second model must be constructed to predict time series X
using only lagged samples of X. If the error of predicting X is significantly
higher in the second model relative to the first model, the causal link
from Y to X (Y → X) will be accepted. A limitation of this method is the
assumption of linear interactions among the brain regions (or M/EEG
channels) because the prediction is done based on the AR and MVAR
models.

Pairwise Granger Causality (PwGC) as a bivariate measure does not
distinguish direct and indirect interactions. The Conditional Granger
Causality (CGC), specially its full version, is one of the solutions but it is
not applicable when the number of data samples is small. In (Stramaglia
et al., 2014), a combination of PwGC and CGC (PwGC þ CGC) is rec-
ommended. Variables with high PwGC to a target node are used in CGC
as the conditional variables.

Since the interactions between the brain regions can be nonlinear
(Marinazzo, 2011; Ioannides and Mitsis, 2010), linear measures suffer
from low sensitivity. To address this shortcoming, researchers have
developed measures of nonlinear connectivity based on Granger and
entropy concepts.

Transfer Entropy (TE) (Schreiber, 2000), Partial Transfer Entropy
(Gomez-Herrero, 2010), and Phase Transfer Entropy (PTE) (Lobier et al.,
2014; Wang et al., 2017) are the nonlinear nonparametric methods
developed based on the information theory. While PTE outperforms TE in
the presence of noise, it is a bivariate measure and thus may not distin-
guish the direct and indirect connections.

Kernel Granger Causality (KGC) (Marinazzo et al., 2008a) is a
nonlinear parametric measure where LGC is done in the feature space of a
kernel function (Gaussian or inhomogeneous polynomial). The perfor-
mance of KGC certainly depends on the kernel used. Also, a limitation of
KGC is that it is a bivariate measure and thus may not distinguish the
direct and indirect connections. To overcome this limitation, a multi-
variate version of KGC is proposed (Marinazzo et al., 2008b; Stramaglia
et al., 2014). In (Chen et al., 2004), a new approach is presented where a
nonlinear relation is approximated by locally linear AR models. How-
ever, this approximation may not be sufficient in highly nonlinear
relationships.

Recently, an integrated method using β minimal Redundancy
Maximal Relevance (βmRMR) regressor selection, Multi-Layer Percep-
tron (MLP), and Granger Causality (GC), named βmRMR–MLP-GC was
developed as a nonlinear connectivity measure (Khadem and
Hossein-Zadeh, 2014). In this measure, the MLP neural network was
employed as a predictor instead of the MVAR model. The original
implementation of βmRMR–MLP-GC does not include the GC concept as
it was based on creating only one model. Here, to investigate the exis-
tence of the causal connection Y → X, they first form a model to predict
time series X using the lagged samples of X and Y time series and then, to
quantify the effect of Y on X, they set the lagged samples of Y to zero in
the first model.

This paper describes our new effective connectivity measure called
ANFISGC. We utilize ANFIS as an appropriate prediction tool to discover
both linear and nonlinear connections. According to (Samanta, 2011),
ANFIS is superior to other tools in predicting time series, especially for
nonlinear and chaotic systems. In Section 2, we describe the structure
and capabilities of ANFIS. We also describe an approach superior to
βmRMR–MLP-GC in which, instead of constructing one model, two
models based on the Granger concept are used to identify casual links.

In (Farokhzadi et al., 2016), we proposed a bivariate version of the
measure. Here, we present a complete conditional version of the mea-
sure, which it is not bivariate and may distinguish between direct and
indirect causal connections. It is not model based and thus does not have
the limitation of the methods like KGC.

We apply ANFISGC on both simulated and experimental MEG dataset.
The simulation design and real MEG data are described towards the end
of Section 2. The results of applying ANFISGC and five alternative

methods (LGC, KGC, PwGC þ CGC, TE, and PTE) on the simulated and
real data are reported in Section 3. Discussions, conclusions, and future
works are presented in Sections 4–6, respectively.

2. Materials and methods

In this section, the theories behind ANFIS, embedding dimension
based on symplectic geometry, and the Granger Causality are reviewed.
Afterwards, these three tools are combined in a unified structure.

2.1. Adaptive Neuro Fuzzy Inference System

ANFIS is an adaptive neural network that works like a Fuzzy Inference
System (FIS) and is applicable in different fields such as in modeling and
time series prediction. Neural Networks (NN) have the ability of learning
and generalization in solving nonlinear problems. FIS has the capability
of approximate reasoning and employing fuzzy information theory. In
ANFIS, the advantages of NN and FIS are combined. The structure of
ANFIS is illustrated in Fig. 1.

ANFIS is a model with five layers and m inputs and includes adjust-
able and fixed nodes. The adjustable nodes are shown by squares and the
fixed nodes are shown by circles in Fig. 1. The first layer generates
membership functions using several parameters. The remaining layers
implement multiplication (logical AND), normalization, linear regres-
sion, and summation as shown in Fig. 1.

ANFIS maps the inputs to the outputs using the membership func-
tions, a set of rules, and some parameters. It learns an approximating
function (f) to estimate the output (y) from the inputs (x1;x2;…:;xm):

y ¼ fðx1; x2;…:; xmÞ (1)

The gradient descend and the least square methods are used to adjust
the parameters of the membership and regression functions in the first
and fourth layers, respectively (Samanta, 2011).

2.2. Embedding dimension based on symplectic geometry

The model order of a system (time series) can be determined via a
variety of approaches. Commonly, Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC) are used for the AR and MVAR
models. For nonlinear systems, these criteria oversimplify the problem
but the embedding dimension (Liu and Aviyente, 2012) may be applied
using a variety of methods like Singular Value Decomposition (SVD),
false nearest neighbors, and Cao's algorithm (Lie et al., 2002). However,
these methods have the following weaknesses:

1. Data intensive, computationally complex, and subjective
2. Dependent on the number of data samples
3. Affected by noise
4. Inappropriate for nonlinear dynamics due to their linearity

In recent years, Symplectic Geometry (SG) is proposed as a more
appropriate tool that does not have the above weaknesses. SG is similar to
SVD but can reflect nonlinearity. The implementation of this method for
estimating the embedding dimension of a single time series is explained
in (Lie et al., 2002). For the multivariate time series, it can be applied by
generalizing the trajectory matrix introduced in (Ataei et al., 2003).

2.3. Granger Causality index

Wiener Granger Causality provides a linear bivariate effective con-
nectivity measure called the Granger Causality (GC). Based on the GC
approach, a causal link will be assigned from Y to X, if incorporating the
past samples of YðtÞ reduces the prediction error of XðtÞ, i.e., causes the
improvement of XðtÞ prediction. The formulation of this method is as
follows.
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