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A B S T R A C T

In magnetoencephalography (MEG) research there are a variety of inversion methods to transform sensor data
into estimates of brain activity. Each new inversion scheme is generally justified against a specific simulated or
task scenario. The choice of this scenario will however have a large impact on how well the scheme performs. We
describe a method with minimal selection bias to quantify algorithm performance using human resting state data.
These recordings provide a generic, heterogeneous, and plentiful functional substrate against which to test
different MEG recording and reconstruction approaches. We used a Hidden Markov model to spatio-temporally
partition data into self-similar dynamic states. To test the anatomical precision that could be achieved, we
then inverted these data onto libraries of systematically distorted subject-specific cortical meshes and compared
the quality of the fit using cross validation and a Free energy metric. This revealed which inversion scheme was
able to identify the least distorted (most accurate) anatomical models, and allowed us to quantify an upper bound
on the mean anatomical distortion accordingly. We used two resting state datasets, one recorded with head-casts
and one without. In the head-cast data, the Empirical Bayesian Beamformer (EBB) algorithm showed the best
mean anatomical discrimination (3.7 mm) compared with Minimum Norm/LORETA (6.0 mm) and Multiple
Sparse Priors (9.4 mm). This pattern was replicated in the second (conventional dataset) although with a
marginally poorer (non-significant) prediction of the missing (cross-validated) data. Our findings suggest that the
abundant resting state data now commonly available could be used to refine and validate MEG source recon-
struction methods and/or recording paradigms.

1. Introduction

Magnetoencephalography (MEG) detects electromagnetic fields at
sensors outside the head. The challenge for the researcher is to infer the
neuronal current distribution responsible for the observed data, despite a
much higher number of possible sources than sensors. The general
approach is to restrict the number of potential solutions through a priori
assumptions, including the temporal relationship between sources (i.e.
source co-variance) and/or the anatomical manifold that gives rise to this
function (e.g. the cortical mesh). These assumptions are continually
being refined and debated (Baillet, 2015; Baillet et al., 2001; Lin et al.,

2006; Wipf and Nagarajan, 2009). Two recurring issues make it difficult
for the community to come to a consensus on optimal source recon-
struction methods - the first is the choice of test scenario, the second is
the lack of ground truth.

Firstly, the choice of task, or simulation set-up used to compare source
localisations will introduce a selection bias towards a specific temporal
pattern predominant in certain cortical areas, which will suit some
inversion assumptions but not others. Here we set out a framework which
utilises diverse spatio-temporal patterns and minimizes selection bias by
using a Hidden Markov model (Baker et al., 2014) to parcel endogenous
resting-state data into collections of self-similar and quasi-stationary time
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segments. Resting state data have been shown to arise from dynamic
spatio-temporal network state fluctuations occurring on the scale of
100–200ms (Baker et al., 2014; Koenig et al., 2002; Wackermann et al.,
1993; Woolrich et al., 2013) that include the rehearsal of the transient
dynamic patterns observed during task performance (O'Neill et al.,
2017). These networks predominate in all M/EEG recordings (even those
which are task based) and are key to healthy brain function (Barttfeld
et al., 2015; Kaiser et al., 2015; Lewis et al., 2009; Li et al., 2012; Peterson
et al., 2014; Philippi et al., 2015; Reineberg et al., 2015; Sheline and
Raichle, 2013; Tessitore et al., 2012; Venkataraman et al., 2012; Wu
et al., 2014; Wurina et al., 2012). We rely on these iterant dynamics,
rehearsing multiple task scenarios, to provide a varied and unbiased
spatio-temporal repertoire of the source reconstruction problems one
might expect from any dataset on which to then test our inversion
schemes.

The second problem then, having identified an appropriate and
representative real dataset (as opposed to simulated data), is the lack of
access to the ground truth with which to compare recording/inversion
techniques. Here we leverage new analytic techniques to quantify the
sensitivity of MEG source inversion schemes by progressively deforming
the anatomical models (Lopez et al., 2013; L�opez et al., 2017; Stevenson
et al., 2014). Specifically, we quantify how distortions in the
MRI-extracted cortical manifold (mesh) affect our ability to predict or
model the underlying current distribution (using cross validation error
and Free energy). The technique assumes that the MEG sensor level data
are due to current flow normal to the cortical surface but makes no as-
sumptions about how this current should be distributed. The rationale is
that the best MEG inversion scheme will be the most sensitive to subtle
distortions of the cortical anatomy (as we know that MEG data derives
from grey matter structure). This spatial distortion metric then provides a
principled basis for comparing different a priori inversion assumptions
(i.e. different algorithms) and recording techniques. We are aiming for a
generic method to provide a benchmark to refine inversion (or recording)
methods based on human electrophysiological data from multiple labs.

The paper proceeds as follows: we first parcel resting state datasets
into brief epochs using a hidden Markov model (Baker et al., 2014). The
epochs for the four dominant networks were then amalgamated into four
network-specific datasets for each subject and taken forwards for inver-
sion. These datasets were then inverted onto a library of subject-specific
distorted meshes, for which we had control over the spatial detail
available in the forward model. For each of these meshes, and for each
inversion scheme, we quantified the model fit using cross validation and
Free energy metrics. As expected, we found that the greater the distortion
from the true cortical mesh, the poorer the model fit. We then used this
spatial quantification to compare different inversion schemes (imple-
mented as different co-variance prior assumptions). For these data, we
found that the beamformer-based priors (EBB) were the most sensitive to
small deviations from the true anatomy. In addition to distinguishing
between algorithms, here we also tested whether we could use the same
methods to distinguish between datasets collected with and without a
head-cast (Meyer et al., 2017a; Troebinger et al., 2014a; 2014b), where
the accuracy of forward model is more precisely known, and those
collected without and found marginal (but not significant) differences.

2. Methods

2.1. MRI

Subjects underwent two MRI scans using a Siemens Tim Trio 3 T
system (Erlangen, Germany). For the head-cast scan, the acquisition time
was 3min 42 s, in addition to 45 s for the localizer sequence. The
sequence implemented was a radiofrequency (RF) and gradient spoiled
T1 weighted 3D fast low angle shot (FLASH) sequence with image res-
olution 1mm3 (1mm slice thickness), field-of view set to 256, 256, and
192mm along the phase (A–P), read (H–F), and partition (R–L; second
3D phase encoding direction) directions respectively. A single shot, high

readout bandwidth (425 Hz/pixel) and minimum echo time (2.25ms)
was used. This sequence was optimized to preserve head and scalp
structure (as opposed to brain structure). Repetition time was set to
7.96ms and excitation flip angle set to 12� to ensure sufficient SNR. A
partial Fourier (factor 6/8) acquisition was used in each phase-encoded
direction to accelerate acquisition. For the anatomical scan later used
to construct the cortical model, multiple parameter maps (MPM) were
acquired to optimise spatial resolution of the brain image (to 0.8mm).
The sequence comprised three multi-echo 3D FLASH (fast low angle shot)
scans, one RF transmit field map and one static magnetic (B0) field map
scan (Weiskopf et al., 2013).

2.2. Head-cast construction

Scalp surfaces from the head-cast MRI data were extracted using
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) by registering MRI images
to a tissue probability map which classified voxels according to tissue
makeup (e.g. skull, skin, grey matter etc.). The skin tissue probability
map was transformed into a surface using the ‘isosurface’ function in
MATLAB® and then into standard template library format with the
outlines of three fiducial coils digitally placed at conventional sites
(left/right pre-auricular and nasion). Next, a positive head model was
printed using a Zcorp 3D printer (600� 540 dots per inch resolution)
and this model placed inside a replica dewar-helmet with liquid resin
poured between the two, resulting in a flexible, subject specific, foam
head-cast with fiducial indentations in MRI-defined locations (Meyer
et al., 2017a).

2.3. MEG recording

Resting state data was acquired from 12 healthy subjects using head-
casts (age: 26.6 � 3.5 yrs (mean þ sd)) and 12 other healthy subjects
without head-casts (age: 25.2 � 6.6 yrs). All subjects were right handed,
had normal or corrected-to-normal vision, and had no history of neuro-
logical or psychiatric disease. Informed written consent was given by all
subjects and recordings were carried out after obtaining ethical approval
from the University College London ethics committee (ref. number 3090/
001).

All subjects underwent a 10min resting state scan with eyes kept
open and instructed to fixate on a central cross on a screen, using a CTF
275 Omega MEG system. The head was localised using the three head-
cast-embedded fiducials (head-cast subjects) or fiducials placed on the
nasion and left and right pre-auricular points (non-head-cast subjects).
Average range of absolute head movement within the 10min resting
state recording was 0.26� 0.06, 0.24� 0.05, 1.1� 0.54mm (X,Y,Z di-
rections; � SEM) for head-cast and 3.2� 0.5, 3.0� 0.5, 3.3� 0.2 (X,Y,Z
directions; � SEM) for non-head-cast data. The data were sampled at a
rate of 1200Hz, imported into SPM12 and filtered (4th order butter-
worth bandpass filter: 1–90Hz, 4th order butterworth bandstop filter
48–52Hz) and downsampled to 250Hz.

Traditional inverse problem solutions are based on the assumption
that the data are stationary during the period of inversion. However,
resting state data contains rapid dynamics that do not accord well with
this assumption (Woolrich et al., 2013). Therefore, in order to improve
stationarity within a given epoch, we parcellated the data into
self-similar periods that capture the resting state network transitions
(100–200ms) using a Hidden Markov Model (HMM) that could identify
the rapid formation and dissolution of recurring resting state networks
(Baker et al., 2014). With this, a ‘statepath’ was estimated for each
10min resting state block, which tracks the fine spatiotemporal dy-
namics and allocates each point in time to one of eight dominant network
states (Baker et al., 2014). For this statepath determination, a copy of
each subject's sensor level data was dimensionally reduced using prin-
ciple component analysis (PCA) to derive 40 components of unit variance
and mean (Woolrich et al., 2013). With these data, an 8 state Hidden
Markov model (HMM; www.fmrib.ox.ac.uk/~woolrich/HMMtoolbox)
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