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A B S T R A C T

This study aims to statistically describe histologically stained white matter brain sections to subsequently inform
and validate diffusion MRI techniques. For the first time, we characterise volume fraction distributions of three of
the main structures in deep subcortical white matter (axons, astrocytes, and myelinated axons) in a representative
cohort of an ageing population for which well-characterized neuropathology data is available. We analysed a set
of samples from 90 subjects of the Cognitive Function and Ageing Study (CFAS), stratified into three groups of 30
subjects each, in relation to the presence of age-associated deep subcortical lesions. This provides volume fraction
distributions in different scenarios relevant to brain diffusion MRI in dementia. We also assess statistically sig-
nificant differences found between these groups. In agreement with previous literature, our results indicate that
white matter lesions are related with a decrease in the myelinated axons fraction and an increase in astrocytic
fraction, while no statistically significant changes occur in axonal mean fraction. In addition, we introduced a
framework to quantify volume fraction distributions from 2D immunohistochemistry images, which is validated
against in silico simulations. Since a trade-off between precision and resolution emerged, we also performed an
assessment of the optimal scale for computing such distributions.

Introduction

Brain tissue microstructural damage can result from neurodegenera-
tive diseases such as amyotrophic lateral sclerosis, Parkinson's disease,
and Alzheimer's disease (Stoessl, 2012; Tur et al., 2016; Pearson et al.,
1985). These conditions produce gradual deterioration or even death of
neurons with concomitant alterations in brain structure and function.
Devising imaging techniques capable of characterising brain tissue
microstructure in vivo is topical within neuroimaging. Key information
about brain microstructure is provided by the volumetric densities of the
different white matter (WM) structures (Horsfield and Jones, 2002). This
knowledge might be valuable not only for research but also for its po-
tential to help in developing early stage diagnosis of neurodegenerative
diseases. The aim of this paper is to characterise the local volume fraction
distribution of axons, astrocytes, and myelinated axons in deep white
matter for different populations. These are important stereological pa-
rameters, but their distribution has not been previously identified.

Age-associated cerebral white matter lesions can be sub-classified

into those within deep white matter (DWM) of the centrum semiovale
(deep subcortical lesion, DSCL) and those close to the angles of the lateral
ventricles (periventricular lesion, PVL). Each has its own clinical rele-
vance (Park et al., 2011), but both are thought to be the consequence of
small vessel-related vascular pathology such as vascular dementia. This
work focus on DSCLs, which are associated with loss of myelin compo-
nents (Wharton et al., 2015) and astrogliosis (Simpson et al., 2007,
2010). To this purpose, various subjects belonging to groups that
represent healthy and diseased conditions were imaged. We analyse
immunohistochemically stained sections of three populations of DWM
samples: Control (no DSCLs were present in the subject), Lesion (the
sample presented DSCLs), and Normal Appearing White Matter (NAWM,
the subject presented DSCLs but not in the sampled tissue).

Tens of thousands of structures such as axons, coexist in 1 mm3 of
brain tissue (Azevedo et al., 2009). Their arrangement varies between
different subjects and also with the presence of disease. The information
obtained from histological analysis has the potential to help in the
description and understanding of healthy tissue, and also in a diverse

* Corresponding author.
E-mail address: s.coelho@sheffield.ac.uk (S. Coelho).

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

https://doi.org/10.1016/j.neuroimage.2018.06.040
Received 23 November 2017; Received in revised form 31 May 2018; Accepted 11 June 2018
Available online 19 June 2018
1053-8119/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

NeuroImage 179 (2018) 275–287

mailto:s.coelho@sheffield.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2018.06.040&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2018.06.040
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neuroimage.2018.06.040
https://doi.org/10.1016/j.neuroimage.2018.06.040


range of conditions including multiple sclerosis (Peterson et al., 2001;
Trapp et al., 1998), schizophrenia (Colon, 1972), and Alzheimer's disease
(Stark et al., 2005). Volume fraction maps of the main white matter
structures can further inform and validate magnetic resonance imaging
(MRI) techniques. Prior distributions on the microstructural parameters
of biophysical models can be generated from this kind of information.

MRI has become a clinical standard to diagnose brain diseases among
other conditions in several body organs (Hollingworth et al., 2000). It has
a spatial resolution considerably lower than histology. While MRI voxels
are in the order of the millimetres, light microscopy can resolve struc-
tures smaller than a micron. While microscopy can discern individual
structures, MRI can only detect the aggregate signal of the distribution of
components within a voxel. However, MRI has the advantage of being a
non-invasive imaging technique that can be used in vivo. Due to the
limited resolution that can be achieved with MR scanners, a modality
that has gained popularity is diffusion MRI (dMRI) (Assaf, 2008).
Diffusion weighted images (DWIs) are sensitised to displacements in
water molecules along pre-determined directions. By measuring across
multiple orientations and processing the set of signals, this technique
enables the extraction of information about the underlying tissue archi-
tecture within a voxel. A wide range of analysis methods have been
developed in the dMRI literature to extract different information from the
DWIs (Basser et al., 1994; Assaf and Cohen, 1999; Tournier et al., 2004;
Jensen et al., 2005). Among them, a number of biophysical tissue models
(Assaf et al., 2004; Jespersen et al., 2007; Alexander et al., 2010; Fiere-
mans et al., 2011; Zhang et al., 2012; Jelescu et al., 2015; Reisert et al.,
2017; Veraart et al., 2017) have been proposed that aim to describe
degeneration processes with higher sensitivity and specificity than pre-
vious attempts to characterise tissue microstructure with Diffusion
Tensor Imaging (DTI) or similar phenomenological models.

As in any other physical problem involving a model, the accuracy of
the results relies on how representative the model is for the phenomenon
under study (see recent review (Novikov et al., 2016)). The validation of
dMRI biophysical models is generally hindered by the complexity and
unavailability of the ground truth. Some of the prominent dMRI bio-
physical models make unrealistic assumptions and hence renders the
results of these models dubious (Lampinen et al., 2017). In addition, in
absence of additional information, the precise estimation of the model
parameters requires a huge amount of measurements. This is where the
characterisation of VV distributions, or more generally information
derived from histology, can play a key role. This information has the
potential to improve the performance of existing tissue models and help
in the validation of new ones. For example, Clayden et al. (2016) showed
that by introducing structured prior information on model parameters,
the accuracy in the estimation is improved. The interpretation of pa-
rameters from several existing dMRI techniques such as DTI or bio-
physical models has been previously validated using histological sections
(cf. (Chenevert et al., 2000; Assaf et al., 2008; Jespersen et al., 2010; Xu
et al., 2014; Sepehrband et al., 2015; Szczepankiewicz et al., 2016)).
Additionally, combined analyses of histology and dMRI have been per-
formed to further understand the development of certain diseases and the
healthy brain (Budde and Frank, 2012; Kolasinski et al., 2012; Khan
et al., 2016; Mollink et al., 2017). Information from histology can also
help developing realistic in silico biomimetic phantoms of brain tissue
(Cook et al., 2006; Beltrachini et al., 2015). Phantoms provide controlled
ground truth that can test different dMRI acquisition schemes and
post-processing methods.

Local volume fractions depend on the scale of the windows of
observation. Previous works have only considered the global average VV

of white matter structures for the whole brain or over complete regions
(Tang et al., 1997; Xu et al., 2014; Sepehrband et al., 2015). There is little
information on which scale should be considered for computing local
volumetric density maps. As in other imaging fields, there is a trade-off
here between precision and resolution (Chen et al., 2000; Kale et al.,
2009). The choice of a small scale can lead to imprecise estimates due to
the comparable size of the structures and the averaging window. Larger

scales yield stable density estimates, but at the price of losing micro-
structural detail and hence be uninformative. To define a convenient
scale of analysis, we computed the standard error in volume fraction
estimates for windows of observation of various scales, together with the
significant differences found between adjacent windows. In order to
characterise different populations, we required histology data from a
large cohort of subjects. The best option for this was immunohisto-
chemistry. However, this modality produces slices with non-negligible
thickness in comparison with the structures of interest. Thus, to
recover the volume fraction from area fraction measures, we had to adapt
and develop new stereological methods. These methods are an inter-
esting additional contribution in themselves.

This paper addresses first the challenge of analysing the appropriate
scale for computing local VV values. Second, the development of a
method for an automatic computation of the VV intra-subject distribu-
tions from thin histology sections. Finally, this paper tackles the
computation of local VV probability distribution functions in different
populations of deep white matter.

Material and methods

Tissue sample selection

The tissue samples for this work came from the Cognitive Function
and Ageing Study (CFAS) neuropathology cohort (Brayne et al., 2006;
Cognitive Function and Ageing Studies (CFAS) Collaboration, 2017).
Brains were removed with the consent of the next of kin and with mul-
ticentre research ethics committee approval, according to standard CFAS
protocols (Fernando et al., 2004). Brains were removed within 60 h of
death, one cerebral hemisphere was fixed in buffered formaldehyde and
sliced into 10mm thick coronal slices. These slices were: 1) immediately
anterior to the temporal stem (anterior), 2) at the level of the pulvinar
(middle), and 3) at the posterior most limit of the occipital horn of the
lateral ventricle (posterior). These slices were scanned using T1 and T2

weighted MRI (details available in (Fernando et al., 2004)). The MR
images were rated by three experienced observers (blind to clinical sta-
tus) and given a score for DSCLs using a modified Scheltens' scale
(Scheltens et al., 1993). Following this scoring, the coronal slices were
stored in formalin until required for this study (at least four weeks). From
every subject one block of approximately 20mm� 20mm� 10mm was
sampled from one of the slices. Blocks were allocated in three groups:
Control, NAWM, and Lesion. Control blocks were taken from cases where
all three levels were scored as 0 on this scale or where only one slice had a
score of a maximum of 1. Lesion blocks were taken from regions with a
Scheltens' score of 4 or greater. NAWMblocks were taken from lesion free
regions of deep white matter in which a DSCL of score 3 or greater was
present elsewhere.

To decide the total number of samples for the study, we performed a
pilot study using five samples for each group. We required that the
standard error of the mean VV for every group needed to be below 0:5%
for all structures. This resulted in the need of at least 25 samples from
each group. To guarantee our requirement, we decided to run the com-
plete experiment with 30 samples per group. Table 1 presents the main
information of the selected patient cohort. Additionally, a baseline de-
mographic analysis was performed to assess significant differences in the
position of the samples or the sex of the subjects between the groups. No

Table 1
Patient cohort details: Number of samples per group (N), age of death (mean and
standard deviation), sex (M¼Male, F¼Female), and level (A¼ Anterior,
M¼Middle, P¼Posterior).

Tissue N Age [y-o] Sex Level

Control 30 85 � 8 13M-17F 9A-17M-4P
NAWM 30 86 � 6 14M-16F 10A-16M-4P
Lesion 30 87 � 7 12M-18F 12A-14M-4P
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