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A B S T R A C T

The cerebral microvasculature plays a key role in the transport of blood and the delivery of nutrients to the cells
that perform brain function. Although recent advances in experimental imaging techniques mean that its structure
and function can be interrogated to very small length scales, allowing individual vessels to be mapped to a
fraction of 1 μm, these techniques currently remain confined to animal models. In-vivo human data can only be
obtained at a much coarser length scale, of order 1mm, meaning that mathematical models of the microvascu-
lature play a key role in interpreting flow and metabolism data. However, there are close to 10,000 vessels even
within a single voxel of size 1mm3. Given the number of vessels present within a typical voxel and the complexity
of the governing equations for flow and volume changes, it is computationally challenging to solve these in full,
particularly when considering dynamic changes, such as those found in response to neural activation.

We thus consider here the governing equations and some of the simplifications that have been proposed in
order more rigorously to justify in what generations of blood vessels these approximations are valid. We show that
two approximations (neglecting the advection term and assuming a quasi-steady state solution for blood volume)
can be applied throughout the cerebral vasculature and that two further approximations (a simple first order
differential relationship between inlet and outlet flows and inlet and outlet pressures, and matching of static
pressure at nodes) can be applied in vessels smaller than approximately 1mm in diameter. We then show how
these results can be applied in solving flow fields within cerebral vascular networks providing a simplified yet
rigorous approach to solving dynamic flow fields and compare the results to those obtained with alternative
approaches. We thus provide a framework to model cerebral blood flow and volume within the cerebral vascu-
lature that can be used, particularly at sub human imaging length scales, to provide greater insight into the
behaviour of blood flow and volume in the cerebral vasculature.

Introduction

Since 2006 there has been a great deal of interest in models of the
cerebral microcirculation. This has been driven by the recent ability to
obtain experimental data about microvascular networks, both in humans
and in animal models. The former has mainly been based on the collec-
tion of post-mortem casts obtained by Duvernoy et al. (1981), and these
experimental data have been presented in detail by Cassot et al. (2006),
Lauwers et al. (2008) and Lorthois et al. (2011). Casts of animal micro-
vascular networks have also been extracted and the flow in them
modelled, see for example Fang et al. (2008), Weber et al. (2008),
Reichold et al. (2009), Tsai et al. (2009), Guibert et al. (2010), Blinder
et al. (2010), Safaeian et al. (2011), Kasischke et al., 2011, Linninger
et al. (2013), Gagnon et al. (2015), Gould et al. (2017) and Schmid et al.

(2017). Many of the models listed above have also examined the trans-
port of oxygen and the coupling between this and cerebral blood flow.

Although there has been a great deal of progress on robustly
extracting vascular networks from imaging data and converting them
into accurately segmented three-dimensional networks, see for example
Gould et al. (2017), acquiring large volumes of such data remains a
time-consuming and expensive task that can only be undertaken with
considerable expertise. The strong dependence of vessel resistance on
vessel radius means that accurate values of the vessel diameter are crit-
ical if the flow field is to be calculated accurately. The strong dependence
of the chosen boundary conditions on the flow simulations has also been
noted by many authors, for example Lorthois et al. (2011).

These factors, together with the high vessel density that means that
solving the flow field in volumes of tissue that are of the length scale of a
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human imaging voxel (of order 1mm) is highly computationally chal-
lenging, has driven the development of homogenisation techniques based
on the creation of artificial networks that match experimentally
measured properties, Su et al. (2012), El-Bouri and Payne (2015) and
El-Bouri and Payne (2016), and coupling these withmodels over multiple
length scales, El-Bouri and Payne (2018). These techniques enable a
scaling up of networks to a voxel scale and hence the flow fields can be
related to imaging data, most easily through the use of transit time dis-
tributions, see for example Park and Payne (2013). Other authors have
developed vascular networks through the use of bifurcating vessels, for
example Boas et al. (2008) and Payne and Lucas (2018), although in
these models no spatial information is considered.

At a voxel level, the vasculature comprises vessels over a relatively
wide range of length scales, with diameters ranging from a few micro-
metres to hundreds of micrometres. Consideration does thus need to be
given to the assumptions and choice of equations that govern blood flow
over these length scales, in particular when attempting to bridge the
‘imaging gap’, when the assumptions valid in the large vessels and those
in the microvasculature may be significantly different. At the smallest
length scales, nearly all authors use the Poiseuille equation in some form,
with viscosity either taken to be constant, based on vessel diameter or
based on vessel diameter and haematocrit, as shown in Table 1. In the
latter two cases, empirical relationships are normally used, with a variety
of different relationships having been applied. Once the resistance to
flow is known, then the network reduces to a conductance matrix, which
can be solved numerically, either by simple inversion for networks with
constant haematocrit or by iteration for networks with non-constant
haematocrit. It is usually assumed that at small length scales static
pressure is conserved at nodes, as has been done in all the studies listed
thus far.

Most of the models listed in Table 1 assume steady state flow con-
ditions, with only a few considering the dynamic response, although this
plays an important part in interpreting the response to changes in neural
activity. Only the models by Boas et al. (2008), Reichold et al. (2009),
Gagnon et al. (2015) and Payne and Lucas (2018) consider the dynamic
response of the small vessels in the cerebral vasculature. These mostly
assume a non-linear compliance of the vessels, enabling changes in flow
to drive changes in volume. Such changes in blood volume are of
particular importance in the context of imaging techniques such as the
BOLD response, where short-term changes in blood volume can strongly
influence the response.

Other approaches have taken a more ‘top-down’methodology, where
lumped parameter models (e.g. windkessel models) are used, with the
lumped parameters aiming to capture the overall behaviour of flow
through large numbers of vessels in a very small number of parameters,
see for example those used by Ress et al. (2009), Kim et al. (2013) in the
context of models of oxygen delivery, and Buxton et al. (1998) and many
subsequent studies (for example Aquino et al. (2014)) in the context of
models of the BOLD response. Such models have a valuable role to play in
understanding the behaviour at large scales, but are inevitably limited by
both their simplicity and the difficulties involved in linking the model
parameters to the underlying network physiology.

The assumptions made are often very different in models of flow in
the larger vessels, for example when the dynamic behaviour of the flow
field plays an important part in both flow and volume, and when total
pressure is often conserved at nodes, see for example Alastruey et al.
(2007). In order to link models across the ‘imaging gap’, care has to be
taken and the limits of assumptions fully understood. For a comprehen-
sive review of models of cerebral blood flow, the reader is referred to
Payne (2017).

In this paper we thus consider the modelling of cerebral blood flow
and volume in networks of blood vessels in detail, justify suitable ap-
proximations that can be made, and propose a framework that can be
used that is mathematically rigorous and computationally simple. We
will also consider the limits of the approximations and hence illustrate
how models can be developed that will cover multiple scales. In order to

do this, we consider the governing equations and use these to develop a
model relating blood flow and volume to pressure in a single vessel;
finally we link vessels together within a network and then show how the
equations can be solved dynamically within a network. In the last section
we will consider each of these in turn before illustrating our proposed
approach in the context of the cerebral vasculature, comparing simula-
tion results with those obtained using previous approaches.

Theory

We assume blood to be a Newtonian fluid of viscosity μ and density ρ
in a flow field that is governed by the incompressible form of the Navier-
Stokes equations. These fundamental fluid flow equations are based on
the concepts of conservation of mass and balance of forces; a full expla-
nation and derivation can be found in many sources, see for example
Acheson (1990). Hence:

∂u
∂t þ ðu:rÞu ¼ �1

ρ
rpþ μ

ρ
r2u (1)

with velocity field u driven by a pressure field p. In an axisymmetric
vessel this reduces to:

∂u
∂t þ u

∂u
∂x ¼ �1

ρ
∂p
∂x þ

μ
ρ
r2u (2)

where the flow velocity has only an axial component, u, which is a
function of radius, r, axial position, x, and time, t. In this latter case, the
pressure gradient can be shown to be only a function of axial position and
time, i.e. the pressure is uniform over the cross-sectional area, based on
order of magnitude arguments, Canic and Kim (2003). A similar order of
magnitude argument can be used to neglect the radial component of the
velocity field when the variations in the vessel cross-section are not too
fast, Canic and Kim (2003). We note that the assumption of a Newtonian
fluid is a limitation to this analysis, but one that we will consider more
fully in the Discussion. For ease of reference, schematics of the different
components of the model are shown in Fig. 1, to which we refer
throughout.

Result 1: The advection term can be neglected when E
ρU2

h
R≫

3
2 (E is Young's

modulus, ρ is fluid density, U is flow velocity, h is wall thickness and R is
vessel inner radius)

The first result that we show is that the advection term can be
neglected in models of cerebral blood flow when the vessel wall stiffness
scaled by wall thickness to radius ratio is greater than a multiple of the
dynamic head. This result is required first to enable us to write down the
governing equations in a simplified form so that we can derive a model
for the inlet and outlet flows in the next section.

We will demonstrate this in two parts. We first consider the flow in
individual vessels, Fig. 1a, since a simple result can be obtained, before
considering the flow field across multiple scales, Fig. 1b. This latter
approach allows us to consider the flow field as a whole; this is valuable
since it links to previous work that has shown how the flow field in the
capillary vessels can be modelled using homogenisation, El-Bouri and
Payne (2015). For simplicity we only consider the steady state solution,
but this does not affect the result.

Single vessels
We firstly reduce the steady state form of Equation (2) to non-

dimensional form, where we reference velocity and pressure to charac-
teristic values, U and P respectively:

u*
∂u*

∂x* ¼ �
�

P
ρU2

�
∂p*

∂x* þ
1
ReL

r2u* (3)
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