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A B S T R A C T

The Roving Mismatch Negativity (MMN), and Visual LTP paradigms are widely used as independent measures of
sensory plasticity. However, the paradigms are built upon fundamentally different (and seemingly opposing)
models of perceptual learning; namely, Predictive Coding (MMN) and Hebbian plasticity (LTP). The aim of the
current study was to compare the generative mechanisms of the MMN and visual LTP, therefore assessing whether
Predictive Coding and Hebbian mechanisms co-occur in the brain. Forty participants were presented with both
paradigms during EEG recording. Consistent with Predictive Coding and Hebbian predictions, Dynamic Causal
Modelling revealed that the generation of the MMN modulates forward and backward connections in the un-
derlying network, while visual LTP only modulates forward connections. These results suggest that both Pre-
dictive Coding and Hebbian mechanisms are utilized by the brain under different task demands. This therefore
indicates that both tasks provide unique insight into plasticity mechanisms, which has important implications for
future studies of aberrant plasticity in clinical populations.

Introduction

Perceptual learning relies on the structural and functional modifica-
tion of neural networks in response to external stimulation (Fahle, 2004).
This experience-dependent neuroplasticity within the sensory systems
provides an opportunity to non-invasively study the mechanisms un-
derlying neuroplasticity throughout the brain. However, different
external demands (e.g., task demands) may elicit different encoding
mechanisms (Koch and Poggio, 1999) and to date, the differences be-
tween such mechanisms have not been characterized.

A rapidly growing focus of neuroimaging research has been that of
Bayesian models of perceptual learning. Such models propose that the
brain is equipped with a generative model, which is built upon prior ex-
pectations extracted from sensory data and provides amapping of (hidden)
cause to (sensory) consequence (Friston, 2005; Knill and Pouget, 2004).
The Predictive Coding model proposes that prediction errors are used to
adjust the generative model until divergence is minimized; allowing for an

accurate model of the cause of incoming information (Bastos et al., 2012;
Friston, 2005; Garrido et al., 2009a; Huang and Rao, 2011). The reduction
of prediction error is dependent on the passing of top down predictions
and bottom up prediction errors through hierarchical, reciprocally con-
nected networks. Neurocomputational modelling of prediction errors
suggests that top-down predictions are expressed through N-methyl--
D-aspartate (NMDAR) and γ-aminobutyric acid receptor (GABAR) receptor
pathways, while bottom up prediction errors rely on fast feedback via
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR) re-
ceptors (Corlett et al., 2016). Under the Predictive Coding framework,
experience-dependent plasticity corresponds to the reciprocal updating of
internal models of the environment through these pathways.

The most studied empirical example of Predictive Coding in the brain
is the Mismatch Negativity (MMN). The MMN is a large, negative, fronto-
central electrophysiological component induced by a surprising or
‘deviant’ tone following a sequence of predictable or ‘standard’ tones
(Garrido et al., 2009a). The widely used ‘Roving MMN’ paradigm
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involves the presentation of trains of tones of the same frequency, where
the first (deviant) tone in each train induces the MMN response, and this
subsequently returns to a standard response over successive pre-
sentations. Under the predictive coding framework, the MMN represents
a failure to predict bottom-up sensory input and, consequently to sup-
press prediction error (Friston, 2005; Garrido et al., 2009a). In support of
this, previous studies have demonstrated that the MMN is generated by
modulations in intrinsic auditory cortex (A1) connectivity, as well as
reciprocal message passing within a fronto-temporal network (Auksztu-
lewicz and Friston, 2015; Garrido et al., 2008; Garrido et al., 2007;
Moran et al., 2014; Schmidt et al., 2013). This suppression of prediction
error corresponds to perceptual inference (Auksztulewicz and Friston,
2016; Garrido et al., 2009b). The MMN paradigm has been used to
demonstrate disrupted perceptual inference in clinical populations (Boly
et al., 2011; Dima et al., 2010) and under pharmacological intervention
(Rosch et al., 2017; Schmidt et al., 2013; Timmermann et al., 2017).

While Predictive Coding has become a dominant framework for un-
derstanding perceptual learning and inference, it is not the only model
for experience dependent plasticity in the neocortex. Hebbian learning
provides an alternative framework, within which learning is dependent
on increases in synaptic efficacy between the neurons in a network
(Hebb, 1949; Lynch, 2004). The most widely studied form of Hebbian
plasticity is Long Term Potentiation (LTP). LTP refers to an activity
dependent increase in synaptic connectivity following repeated neuronal
co-activation; the most common type is dependent on an influx of Ca2þ

through NMDARs leading to long term alterations in cell structure and
function (Abraham andWilliams, 2003; Bliss and Lømo, 1973; Cooke and
Bliss, 2006; Teyler and DiScenna, 1987). Importantly, LTP conforms to
many Hebbian characteristics such as input-specificity, co-activation and
associativity (Hebb, 1949). As such, Hebbian LTP is regarded as the most
likely neuronal mechanism underlying memory formation.

LTP has been primarily studied in laboratory animals using direct
neuronal electrical stimulation (Bliss and Lømo, 1973; Figurov et al.,
1996; Harris et al., 1984; Kirkwood and Bear, 1994; Teyler and DiScenna,
1987). However, following the demonstration of visually-induced en-
hancements in the neural activation of rodents (Heynen and Bear, 2001),
Teyler et al. (2005) presented one of the first electroencephalography
(EEG) paradigms for measuring LTP-like mechanisms noninvasively in
humans. High frequency (~9Hz) visual stimulation was used to induce
an enhancement of the visually evoked potential (VEP) to later low fre-
quency (~1Hz) presentations of the same stimulus. Subsequent human
and rodent studies have demonstrated that this visually-induced
enhancement conforms to many of the Hebbian characteristics seen in
rodent LTP such as longevity, NMDAR dependence (Clapp et al., 2006)
and input specificity (McNair et al., 2006; Ross et al., 2008). Further-
more, this paradigm has been used to demonstrate modulated plasticity
in healthy, and clinical populations (Çavuş et al., 2012; Normann et al.,
2007; Smallwood et al., 2015; Spriggs et al., 2017). Together, this body of
human and rodent studies indicates that this visually induced enhance-
ment represents the induction of an Hebbian LTP-like form of neuro-
plasticity (Clapp et al., 2012; Kirk et al., 2010).

While potentiation of the VEP has been well characterized, modula-
tions to the underlying network remain largely unexplored. Both EEG
source localization and functional magnetic resonance imaging (fMRI)
have localized the LTP-like enhancement to extrastriate visual cortex
(Clapp et al., 2005; Teyler et al., 2005). From extrastriate visual cortex,
the ventral and dorsal visual streams extend to the medial temporal lobe
and parietal lobe respectively (Felleman and Van Essen, 1991; Grill--
Spector andMalach, 2004). Experience-dependent plasticity within these
networks is understood to underlie visual perceptual learning (Fahle,
2004; Kourtzi and DiCarlo, 2006), with changes occurring at some of the
earliest levels of cortical processing (Cooke and Bear, 2014; Kourtzi and
DiCarlo, 2006). The ventral visual stream is understood to support object
recognition, and is closely intertwined with medial temporal memory
networks (Desimone et al., 1985; Felleman and Van Essen, 1991; Grill--
Spector and Malach, 2004; Kourtzi and DiCarlo, 2006). As such, one can

speculate that LTP-induction will enhance connectivity within this
ventral visual network.

As illustrated above, both Predictive Coding and Hebbian mecha-
nisms have been independently implicated in perceptual learning and the
Roving MMN and visual LTP paradigms were designed to index these
models respectively. However, the two models are built upon funda-
mentally different assumptions of how perceptual learning is encoded in
the brain; primarily, while Predictive Coding is dependent on updating
an internal, generative model, Hebbian learning is not. The coexistence
of Predictive Coding and Hebbian mechanisms has been explored in
models of cortical responses such as the Free Energy Principle (Friston,
2005, 2009, 2010). Under the Free Energy Principle, Predictive Coding
and Hebbian mechanisms are used to define the hidden states and causes
of an internal generative model respectively (Bastos et al., 2012; Friston,
2010). However, it may be possible that Hebbian processes can occur
independent of a generative model, and that the brain may employ
different encoding mechanisms for different tasks (Koch and Poggio,
1999). As such, the aim of the current study was to compare the mech-
anisms underlying the generation of the MMN using the Roving MMN
paradigm, and the potentiated VEP using the visual LTP paradigm. It was
hypothesized that the paradigms would induce different changes within
the underlying neural network. Specifically, as the primary difference
between Hebbian and Predictive Coding models is dependence on a
generative model, it was hypothesized that the paradigms would differ in
their modulation of top-down connectivity.

Materials and methods

Participants

44 male and female participants volunteered for the study (age range:
19–33, 33 female and 7 male; the imbalance in gender split is due to
overlap of participants with another study). Four participants were
excluded from the final analysis due to insufficient data quality, leaving a
final sample of 40. Participants were required to have no history of
neurological conditions or concussion, and normal or corrected to normal
vision. This study was approved by the University of Auckland Human
Participants Ethics Committee. Participants provided informed written
consent prior to participation.

Equipment

EEG data were collected using 64 channel Acticap Ag/AgCl active
shielded electrodes and Brain Products MRPlus amplifiers recorded in
Brain Vision Recorder (Brain Products GmbH, Germany) with a 1000 Hz
sampling rate, and 0.1 μV resolution. FCz was used as an online reference,
AFz as ground. Electrode impedance was maintained below 25 kΩ.

Stimuli were displayed on an ASUS VG248QE computer monitor with
a screen resolution of 1920� 1080 and 144 Hz refresh rate. TTL pulses
generated through the parallel port of the display computer provided
synchronisation of stimulus events with EEG acquisition.

Tasks

All participants were presented with both the MMN and LTP tasks. To
avoid carry-over effects, the presentation order was such that for 25% of
participants the MMN task preceded the LTP task, for 25% it followed the
LTP task, and for 50% it took place during the rest period of the LTP task.

Mismatch negativity
EEG was recorded continuously while participants engaged in a

roving auditory oddball task used to probe the mismatch negativity in
response to unattended stimuli (Fig. 1i; Garrido et al., 2008). The task
was written and run in MATLAB using the Cogent toolbox (www.vislab.
ucl.ac.uk/cogent.php).

The stimuli consisted of trains of one to 11 identical sinusoidal tones.
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