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A B S T R A C T

Spontaneous brain activity at rest is highly organized even when the brain is not explicitly engaged in a task.
Functional connectivity (FC) in the alpha frequency band (α, 8–12 Hz) during rest is associated with improved
performance on various cognitive and motor tasks. In this study we explored how FC is associated with visuo-
motor skill learning and offline consolidation. We tested two hypotheses by which resting-state FC might ach-
ieve its impact on behavior: preparing the brain for an upcoming task or consolidating training gains. Twenty-four
healthy participants were assigned to one of two groups: The experimental group (n¼ 12) performed a
computerized mirror-drawing task. The control group (n¼ 12) performed a similar task but with concordant
cursor direction. High-density 156-channel resting-state EEG was recorded before and after learning. Subjects
were tested for offline consolidation 24h later. The Experimental group improved during training and showed
offline consolidation. Increased α-FC between the left superior parietal cortex and the rest of the brain before
training and decreased α-FC in the same region after training predicted learning. Resting-state FC following
training did not predict offline consolidation and none of these effects were present in controls. These findings
indicate that resting-state alpha-band FC is primarily implicated in providing optimal neural resources for up-
coming tasks.

Introduction

The human brain spontaneously produces electromagnetic activity
even when a subject performs no specific task. In particular, oscillations
in the alpha frequency band (α), that is, about 8–12 Hz, can be observed
during wakefulness without engaging in any task. Spontaneous brain
activity is highly organized and coherent within specific neuro-
anatomical systems (Damoiseaux et al., 2006; Fox et al., 2005; Greicius
et al., 2003) and accounts for the majority of the brain's energy cost
(Raichle and Mintun, 2006). Synchronization of oscillations between
different brain regions at rest reflects communication (i.e. functional
connectivity, FC) between brain regions (Fries, 2005) and correlates with
better behavioral performance on various cognitive and motor tasks in
healthy humans (Fox et al., 2007; Guggisberg et al., 2015; Hipp et al.,
2011; Sadaghiani et al., 2015). This has been shown in particular for
alpha rhythms which are the main carrier for phase synchronization
during resting-state (Dubovik et al., 2013; Guggisberg et al., 2008, 2015;
Hillebrand et al., 2012; Rizk et al., 2013). The precise role of these os-
cillations is unknown.

There are currently two hypotheses on how resting-state FC might
impact behavior (Deco et al., 2011; Harmelech and Malach, 2013; Miall
and Robertson, 2006; Raichle and Snyder, 2007; Sadaghiani and
Kleinschmidt, 2013). First, it might optimize the availability of neural
resources and prepare for neural processing during tasks. Brain activity
immediately before a task was found to influence behavioral performance
as well as the magnitude of neural responses during the task (Britz and
Michel, 2011; Sadaghiani and Kleinschmidt, 2013). Evidence for this
possibility has been provided in particular for neural oscillations in the
alpha frequency band in visual perception. Amplitude, phase, and syn-
chronization of alpha oscillations at stimulus onset influenced subse-
quent perception of visual stimuli (Busch et al., 2009; Ergenoglu et al.,
2004; Hanslmayr et al., 2005, 2007; Mathewson et al., 2009; van Dijk
et al., 2008). However, the role of longer periods of rest on subsequent
task processing and learning has so far not been explored.

A second hypothesis posits that resting-state communication after
learning contributes to consolidation of training gains. This is true for
sleep-related neural consolidation processes (Diekelmann et al., 2009;
Gais et al., 2002; Huber et al., 2004; Maquet et al., 2000; Robertson et al.,
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2004; Stickgold, 2005; Walker et al., 2002). However, the role of
resting-state processes during wakefulness for consolidation is less clear.
Memory consolidation has also been reported during awake resting pe-
riods (Cohen et al., 2005; Press et al., 2005), although behavioral gains
have been less consistent.

Alpha and beta rhythms have been shown to modulate after motor
learning (Deeny et al., 2009; Gentili et al., 2015; Mehrkanoon et al., 2016;
Wu et al., 2014). Wu et al. (2014) used electroencephalography (EEG) and
reported that increased FC in the beta-band in left parietal-motor areas
during task predicted improvements in a pursuit rotor task. Gentili et al.
(2015) found a reduction of alpha-band FC in frontal regions after training
on a motor adaptation task. So far studies investigated network changes by
comparing changes in resting-states before vs. during, or before vs. after
motor-skill learning task (Albert et al., 2009a; Gregory et al., 2014; Sami
et al., 2014; Vahdat et al., 2011; Wu et al., 2014). It remains unknown how
alpha-band FC before task influences motor skill learning and how it is
related to offline consolidation.

The present study aimed to test both hypotheses in a single paradigm
of procedural learning (Dayan and Cohen, 2011; Willingham, 1998;
Wolpert et al., 2011) in healthy human participants. We explored func-
tional connectivity associated with visuo-motor skill learning in
mirror-drawing (Julius and Adi-Japha, 2016; Milner, 1962). This type of
task appeals to proprioceptive and visual feedback to control movements,
processes presumably relevant to development and learning of a new
sport or a musical instrument or “relearning” of motor skills following
brain lesions. The mirror-drawing task requires participants to trace a
given shape while right-left movements of the mouse are reversed. Unlike
sequence learning tasks, performance on the mirror-drawing task gen-
eralizes to other tasks, thus constituting a valuable model for studying
motor skill learning (Desmottes et al., 2017; Lejeune et al., 2016; Rouleau
et al., 2002; Seidler, 2007). Both types of tasks are supported by distinct
brain circuits: motor sequence learning is supported by a
motor-striato-cerebellar circuit whereas spatial motor-skill learning (e.g.
mirror-drawing) is supported by a frontoparietal-striato-cerebellar circuit
(Hikosaka et al., 2002). Brain stimulation studies reported modulations
in mirror-drawing performance after left parietal (Balslev et al., 2004) or
cerebellar stimulation (Doppelmayr et al., 2016). The only study inves-
tigating EEG dynamics of mirror-drawing –using a single electrode over
participants' forehead– reported a decrease of frontal EEG power during
training which correlated with greater overall mirror-drawing perfor-
mance (Wong et al., 2014).

Up to now, it remains unclear how resting-state FC, and more spe-
cifically how alpha-band FC before and after training, is associated with
mirror-drawing skills. The aim of the study is to investigate whole brain
functional connectivity at rest using high-density EEG to dissociate brain
network activity predicting motor-skill learning from those predicting
next day offline consolidation.

Methods

Participants

Twenty-four healthy, French-speaking, participants were assigned to
the experimental group (Exp Group: n¼ 12, aged 22� 4; 7 men; all right-
handed) or the control group (Ctrl Group: n¼ 12; aged 23� 5; 7 men; all
right-handed). Participants provided written informed consent and the
study was approved by the Ethics Committee of the Canton of Geneva
and conducted according to the Declaration of Helsinki. No participant
had a history of psychiatric or neurological illness. There were no gender
(X2

(1)¼ 0.0, p¼ 1.0) or age differences between both groups (t(22)¼ -
0.61, p¼ 0.83).

Stimuli and procedure

Mirror-drawing task
Stimuli were black-line star shaped figures with eight spikes

(34� 27 cm, 0.8 cmwidth). For every trial, a separate star with randomly
tilted spikes was used with the constraint that the total length of the line
was always similar. Participants in the Exp group performed a comput-
erized classic mirror-drawing task (Milner, 1962) with right-left move-
ments of the mouse reversed as a measure of motor skill learning.
Participants in the Ctrl group performed a similar task but with concor-
dant direction of cursor movement as a measure of motor execution. A
blue rectangle indicated where participants were required to start, cor-
responding to the top spike of the star. Participants were asked to
continue on the right hand-side of the start point. The finishing point was
in the same blue rectangle as the start. The two variables of interest were
the number of errors and the completion time. Errors were calculated as
the number of times the participants went beyond– inwards or outwards -
the stars' boundary line (Errors). Completion time (Time) was calculated
as the time subjects took to complete one star, from the first click in the
blue rectangle to the last click in the blue rectangle. Participants were
asked to be as accurate and fast as possible, without trading errors for
speed or speed for errors. In case of significant deviation of themouse, i.e.
for example a sudden jolt, the trial was terminated by the experimenter
and a new star was proposed.

Both groups performed a short 2-min training of their respective tasks
to get familiarized. Then, participants performed the task in the morning
of the first day for 12min (Fig. 1A). 24h later, participants came back to
the lab to perform the same task for 12min to test for offline consoli-
dation. Training was determined as the amount of time spent on the task,
i.e. 12min, regardless of how many stars participants performed. Par-
ticipants were not told they would be tested on this same task the
following day, thereby minimizing conscious rehearsal of the task. Par-
ticipants in the Exp group performed on average (mean � SD) 9.5� 2.5
stars in 12min on Day1 and 12.3� 2.5 stars on Day2. Participants in the
Ctrl group performed 25.0� 10.1 stars in 12min on Day1 and 24� 10
stars on Day2. Participants filled out a questionnaire addressing use of
computer and mouse and frequency of video game playing (as mirror-
drawing skills are required for certain types of video games). All partic-
ipants were regular computer users but naïve with regards to mirror-
drawing skills. Furthermore, a questionnaire evaluating sleepiness
(Karolinska Sleepiness Scale, KSS) was filled by the participant before
each session and the number of hours of sleep before each day was
recorded. Participants were asked to stick to their sleeping routine before
both days to prevent differences in level of fatigue between both daily
sessions.

Statistical analyses
To measure Learningwe contrasted the first four trials on day 1 (Day 1

BEG) with the last four trials on day 1 (Day 1 END). To measure Offline
consolidation, we contrasted the last four trials on day 1 (Day 1 END) with
the first four trials on day2 (Day 2 BEG) for Errors and Time separately.
Two participants in the Exp group performed 7 trials instead of 8 on Day
1; we thus contrasted the first three trials with the last four trials for these
two participants. An additional analysis included learning effects on
Day2 and contrasted the first four trials on day2 (Day2 BEG) with the last
four trials on day2 (Day2 END).

We then performed mixed model repeated-measure ANOVAs for Er-
rors and Time with between-subject factor Group (Exp, Ctrl) and within-
subject factor Time of Day (Day 1 BEG, Day 1 END, Day 2 BEG). In case of
significant interaction, paired t-tests were performed for each group
separately. Greenhouse-Geisser correction was used in cases of violation
of sphericity. Effect sizes are reported with the partial eta square (ηp2).

Additionally, we calculated two indexes taking into account the
relative percentage of improvement. The learning indexwas calculated for
Errors and Time variables separately as ((END-BEG Day1/BEG Day1)
*100). Error and Time percentages were then averaged to obtain a single
value. The learning index reflects the extent to which their performance
improved at the end of Day1 compared to the beginning of Day1.

The offline consolidation index was calculated for Errors and Time as
((BEG Day2-END Day1/END Day1)*100); these two percentages were
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