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A B S T R A C T

Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI
signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are
expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-
squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses.
In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models
as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for
quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form.
We simulated measurements from single- and double-tensor models where the correct values of several quantities
are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included
results from residual bootstrap for comparison and found good agreement. The validation employed several
different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained
Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corre-
sponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects
with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabi-
listic models, capable of accurate uncertainty quantification.

Introduction

Diffusion magnetic resonance imaging (dMRI) permits the noninvasive
assessment of tissuemicrostructure. Byfitting amodel of the dMRI signal in
each voxel it is possible to derive various quantitative features. Examples
include voxel-based scalar indices such as fractional anisotropy (FA) or
return to origin probability (RTOP), as well as the pairwise probability of a
virtual fiber being traced between two points. Using such measures it is
possible to perform statistical group analyses. For the reliability of such
tests it is essential to quantify the uncertainty of the relevantmeasures. This
fact is well-established in the field of functional magnetic resonance im-
aging (fMRI)— where it is common to, for example, downweight subjects
with a high variance (Chen et al., 2012;Woolrich et al., 2004)— but not so
for dMRI; the most popular approach for doing FA group comparisons
(Smith et al., 2006) ignores uncertainty in FA.

A large body of research has been devoted to formulating new
diffusion models that address the inability of diffusion tensor imaging
(DTI) (Basser et al., 1994) to resolve crossing and kissing fibers. A
common trait among several of the most widely used methods is that they
expand the signal in an appropriately chosen functional basis. Often, the
coefficients of the expansion are then determined by some variation of
linear least-squares (see Table 1 for a non-exhaustive list). This is pre-
cisely the type of models we are concerned with in this paper— linear (in
the coefficients) models fitted with least-squares. Incidentally, some
non-parametric models (Andersson and Sotiropoulos, 2015; Sj€olund
et al., 2017) also belong to this class, although we will not elaborate on
the connection here. Our key observation is that linear models fitted with
least-squares are amenable to a probabilistic reinterpretation. We will
show that it follows almost immediately that, under the same assump-
tions as in the fitting, it is possible to determine the full posterior
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distribution of the coefficients — not just a point estimate.
This is, of course, not the first time someone has taken a probabilistic

view on signal estimation in dMRI. It is well-known that the noisy signal
in MRI follows a Rician, or more generally a non-central Chi, distribution
(Gudbjartsson and Patz, 1995), which on the other hand is approximately
Gaussian when the signal-to-noise ratio is, at least, moderately high (≳3).
In DTI (Basser et al., 1994) and diffusion kurtosis imaging (DKI) (Jensen
et al., 2005), it is common to fit a linear model to the logarithm of the
signal. The resulting log-Rician distribution is again approximately
normal for moderate signal-to-noise ratios, but with signal-dependent
(heteroscedastic) noise (Salvador et al., 2005). In such cases, weighted
least-squares has been shown to work well (Rawlings et al., 2001; Veraart
et al., 2013). Error propagation in DTI fitted with nonlinear least-squares
has also been investigated (Koay et al., 2007).

Bayesianmethods (Behrens et al., 2003; Gelman et al., 2013; Gu et al.,
2017; Wegmann et al., 2017) are distinctly different from methods using
least-squares to find point estimates. By assuming parametric probability
distributions for the likelihood and for every parameter in the model,
Bayesian methods make it possible to derive the probability distribution
of any quantity of interest, at least in principle. Actually evaluating such
distributions, however, typically relies extensively on sampling methods
such as Markov Chain Monte Carlo.

Bootstrapping is a frequentistic alternative to Bayesian models. The
general idea is to approximate the underlying probability distribution
with an empirical one. Samples are drawn with replacement and for each
draw the parameter of interest is calculated. By repeating this procedure,
it is possible to approximate the sampling distribution of the relevant
parameter. Naturally, the quality of the approximation degrades as the
number of empirical samples decreases. Residual bootstrap (Chung et al.,

2006) and wild bootstrap (Whitcher et al., 2008) are two forms of
model-based bootstrapping that have been applied to dMRI. In residual
bootstrap, the normalized residuals (after fitting a model) are resampled,
and the fitting procedure is repeated for this new draw, after which the
parameter value of interest is recorded. All residuals are assumed to have
identical distributions and resampling is done freely among them. In wild
bootstrap, on the other hand, modified residuals are randomly added or
subtracted to the fitted point where they originated from, without being
distributed to other design points. Model-based bootstrapping is only
reliable insofar as the model can adequately describe the measured
diffusion signals (Yuan et al., 2008). Basically all of the methods
described above have been applied to tractography (Behrens et al., 2007;
Berman et al., 2008; Haroon et al., 2009; Jeurissen et al., 2011; Jones,
2003, 2008).

In this work, instead of starting out by assuming more or less
contrived prior distributions for the coefficients and the likelihood, we
look at methods that are tried and tested and see what the corresponding
priors are. Surprisingly, it results in a simple closed form expression for
the posterior distribution of coefficients, and by extension also of all
parameters linear in the coefficients. In other cases there is no need to
repeat the whole fitting procedure, as in bootstrapping methods. Since
the posterior is available in closed form it is very efficient to sample from
it directly.

Theory

To recapitulate, we focus on linear models fitted with linear least-
squares. This might sound restrictive at first but — as can be seen in
Table 1 — it encompasses several of the most widely used models in

Table 1
An assortment of linear models used in dMRI. We have used the notation q ¼ q bq where applicable. For clarity, some details have been omitted.

Method y ϕðxÞ c W Λ

Diffusion Tensor Imaging (DTI)
(weighted least-squares)
(Basser et al., 1994; Salvador et al., 2005)

log SðqÞ 1; qiqj log S0 ; Dij diagðS2Þ 0

Diffusion Kurtosis Imaging (DKI)
(weighted least-squares)
(Veraart et al., 2013)

log SðqÞ 1; qiqj; qiqjqkql log S0 ; Dij ; Kijkl diagðS2Þ 0

Q-space Trajectory
Imaging (QTI)
(Westin et al., 2016)

log SðBÞ 1; B; B�2 log S0 ; hDi; ℂ diagðS2Þ 0

Constrained Spherical
Deconvolution (CSD)
(Tournier et al., 2007)

SðbqÞ χðbqÞYlðbqÞ cl I L

Q-Ball Imaging (QBI)
(Descoteaux et al., 2007; Tuch, 2004)

SðbqÞ YlðbqÞ cl I ∫ S2 jjΔbSjj2dΩ

MAP-MRI with Laplacian
regularization (MAPL)
(Fick et al., 2016; €Ozarslan et al., 2013)

S ðqÞ Φnðu;qÞ cn I ∫ ℝ3 jjΔSjj2dq

Spherical Polar Fourier (SPF)
(Assemlal et al., 2009)

S ðqÞ RkðqÞYlðbqÞ ckl I ΛR þ ΛY

y: response variable.
x: input variables.
ϕðxÞ: basis function.
c: coefficients.
W: inverse noise correlation matrix.
Λ: regularization matrix.
S: signal.
S0: non-diffusion weighted signal.
χ: single fiber response function.
Yl: real spherical harmonics, cf. (Descoteaux et al., 2007).
L: matrix determined iteratively using a sparsifying heuristic.
Δ: Laplace operator.
Δb: Laplace-Beltrami operator.
Φn: Hermite functions scaled by a factor u.
Rk: Gaussian Laguerre polynomials.
ΛR: diagonal matrix penalizing higher radial orders.
ΛY : diagonal matrix penalizing higher angular orders.
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