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A B S T R A C T

Multivariate pattern analysis (MVPA) methods such as decoding and representational similarity analysis (RSA) are
growing rapidly in popularity for the analysis of magnetoencephalography (MEG) data. However, little is known
about the relative performance and characteristics of the specific dissimilarity measures used to describe differ-
ences between evoked activation patterns. Here we used a multisession MEG data set to qualitatively characterize
a range of dissimilarity measures and to quantitatively compare them with respect to decoding accuracy (for
decoding) and between-session reliability of representational dissimilarity matrices (for RSA). We tested
dissimilarity measures from a range of classifiers (Linear Discriminant Analysis – LDA, Support Vector Machine –

SVM, Weighted Robust Distance – WeiRD, Gaussian Naïve Bayes – GNB) and distances (Euclidean distance,
Pearson correlation). In addition, we evaluated three key processing choices: 1) preprocessing (noise normal-
isation, removal of the pattern mean), 2) weighting decoding accuracies by decision values, and 3) computing
distances in three different partitioning schemes (non-cross-validated, cross-validated, within-class-corrected).
Four main conclusions emerged from our results. First, appropriate multivariate noise normalization substantially
improved decoding accuracies and the reliability of dissimilarity measures. Second, LDA, SVM and WeiRD yielded
high peak decoding accuracies and nearly identical time courses. Third, while using decoding accuracies for RSA
was markedly less reliable than continuous distances, this disadvantage was ameliorated by decision-value-
weighting of decoding accuracies. Fourth, the cross-validated Euclidean distance provided unbiased distance
estimates and highly replicable representational dissimilarity matrices. Overall, we strongly advise the use of
multivariate noise normalisation as a general preprocessing step, recommend LDA, SVM and WeiRD as classifiers
for decoding and highlight the cross-validated Euclidean distance as a reliable and unbiased default choice for
RSA.

Introduction

The investigation of the rapid neural dynamics underlying cognitive
functions requires a combination of high-temporal resolution neural
measurements with analytical methods that systematically and effi-
ciently probe the information encoded in measured brain activity. A
promising approach is the application of multivariate pattern analysis
methods (MVPA) to magnetoencephalography (MEG), combining the
sensitivity of pattern-based methods with the high temporal resolution of
MEG. Two prominent MVPA methods are multivariate decoding (Cox
and Savoy, 2003; Haxby et al., 2001; Haynes and Rees, 2005; Kamitani
and Tong, 2005), which quantifies the discriminability of
condition-specific activation patterns, and representational similarity

analysis (RSA) (Diedrichsen and Kriegeskorte, 2017; Kriegeskorte, 2009;
Kriegeskorte et al., 2008a, 2008b; Kriegeskorte and Kievit, 2013). RSA
characterizes the similarity of measured responses to experimental con-
ditions in representational dissimilarity matrices (RDMs). As RDMs can
in principle be computed for any measurement modality, RSA on MEG
opens the way to quantitatively relate rapidly emerging brain dynamics
to other data, such as fMRI (Cichy et al., 2016b, 2013) in order to localize
responses; computational models (Cichy et al., 2017a, 2016a; Kietzmann
et al., 2017; Pantazis et al., 2017; Seeliger et al., 2017; Su et al., 2012;
Wardle et al., 2016) in order to understand the underlying algorithms
and representational format; to behaviour (Cichy et al., 2017b; Furl et al.,
2017; Mur et al., 2013); and across species (Cichy et al., 2014).

At the core of MVPA is the dissimilarity measure used to quantify the
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discriminability (decoding) or the dissimilarity structure (RSA) of evoked
activation patterns, fundamentally affecting both the accuracy and the
interpretability of results. Yet little is known about the performance and
characteristics of different dissimilarity measures for MEG MVPA.
Inspired by previous work comparing different dissimilarity measures for
fMRI (Walther et al., 2016), we conducted a comprehensive and sys-
tematic investigation of dissimilarity measures for MEG to close this gap.

To this end, we compared a set of dissimilarity metrics comprising
classifiers (Linear Discriminant Analysis – LDA, Support Vector Machine
– LDA, Weighted Robust Distance –WeiRD, Gaussian Naïve Bayes –GNB)
and distance measures (Euclidean distance, Pearson correlation). This
comparison was done qualitatively, by characterizing dissimilarity time
courses, and quantitatively, by comparing decoding accuracies (decod-
ing) and session-to-session reliabilities of RDMs (RSA). We further
evaluated the effects of three main processing choices that affect
dissimilarity estimation: 1) preprocessing (noise normalisation, removal
of the pattern mean), 2) the use of classification decision values to pre-
serve gradual information in classification-based MVPA, and 3) data
partitioning (non-cross-validated; cross-validated; within-class-cor-
rected, i.e. subtracting within-from between-condition distances).

Our results give rise to four straightforward recommendations for
MVPA in MEG research. First, multivariate noise normalisation is
strongly recommended as a general preprocessing step when considering
a number of methodological intricacies. Second, for decoding we
recommend LDA, SVM and WeiRD, which achieved high accuracies.
Third, we show that a previously reported impairment of pattern reli-
ability for decoding accuracy (Walther et al., 2016) can be mitigated by
weighting correct and incorrect predictions with classifier decision
values. Fourth and finally, concerning distance-based dissimilarity
measures for RSA, we recommend the cross-validated Euclidean distance
as a robust, gradual, reliable and largely unbiased default choice.

Materials and methods

Data set

The present study is based on a previously published MEG data set
(Cichy et al., 2014). This data set was chosen for two reasons. First, the
data set has two experimental sessions per participants, enabling us to
compute inter-session reliabilities of our measures. Although it is
possible to split a single experimental session into subparts to compute
reliability, we reasoned that two independent sessions more realistically
probe the robustness of a measure with respect to measurement quality
(e.g., noise level of individual channels) or daily conditions of partici-
pants (e.g. wakefulness or motivation). Second, the employed stimulus
set has been used in a number of previous studies (Cichy et al., 2016b,
2014; Cichy and Pantazis, 2016; Khaligh-Razavi and Kriegeskorte, 2014;
Kiani et al., 2007; Kriegeskorte et al., 2008b; Mur et al., 2013; Walther
et al., 2016), facilitating the comparison of our results with previous
literature.

We briefly summarize the most relevant aspects of experimental
design and acquisition underlying the present data set (for a detailed
description, see Cichy et al., 2014). Participants viewed coloured images
of 92 different objects on a grey background presented at the centre of a
screen (2.9� visual angle, 500ms duration), overlaid with a dark grey
fixation cross. For each of two MEG sessions, participants completed 10
to 15 runs of 420 s duration each. Each image was presented twice in
each MEG run in random order, with a trial onset asynchrony of 1.5 or
2 s. To control vigilance and eye blink behaviour, participants were
instructed to press a button and blink their eyes in response to a paper
clip that was shown randomly every 3 to 5 trials (average 4). Paper clip
trials were excluded from further analysis.

During the experiment, continuous MEG signals from 306 channels
(204 planar gradiometers, 102 magnetometers, Elekta Neuromag TRIUX,
Elekta, Stockholm) were acquired at a sampling rate of 1000Hz. Recor-
ded MEG signals were filtered in a frequency range of 0.03–330Hz

(default setting of Elekta). The lower frequency serves to remove direct
current (DC) drifts and its precise value is not critical as long as it is small
enough to avoid distortions of event-related responses (see Rousselet,
2012). The higher frequency serves to prevent aliasing. To protect from
filter imperfections, the Elekta default value is set to 330Hz, i.e. below
the theoretical Nyquist frequency of 500 Hz. As to our knowledge there
are no known informative visually evoked brain signals above the upper
limit of the gamma band, i.e. 100 Hz, the precise value of the higher
frequency is likewise not critical.

For spatiotemporal filtering we used the MaxFilter software (Elekta,
Stockholm), which has been shown to reduce noise and remove artefacts
without altering the field patterns of brain signals (Taulu et al., 2004;
Taulu and Simola, 2006). We used default parameters (harmonic
expansion origin in head frame¼ [0 0 40] mm; expansion limit for in-
ternal multipole base¼ 8; expansion limit for external multipole
base¼ 3; bad channels automatically excluded from harmonic expan-
sions¼ 7 s.d. above average; temporal correlation limit¼ 0.98; buffer
length¼ 10 s). Intuitively, a spatial filter was applied that separated
signal data from distant noise sources outside the sensor helmet. Subse-
quently, a temporal filter was applied that discarded time series com-
ponents of the signal data that were strongly correlated with noise data.

Finally, raw MEG trials were extracted with 100ms baseline and a
1000ms post-stimulus period (i.e., 1101ms length), yielding 306-
dimensional pattern vectors for each time point of a trial. In addition, raw
trials were down-sampled by averaging across consecutive 10ms bins to
decrease the computational costs and to increase the signal-to-noise
ratio.

General analysis pipeline

We first introduce the general analysis pipelines underlying the
comparison of dissimilarity measures for decoding and RSA and there-
after describe each step of the pipeline in detail. As shown in Fig. 1A, in a
first step, trials were combined to pseudo-trials to improve the overall
signal-to-noise ratio. In a second step, pseudo-trials were submitted to an
optional preprocessing stage: multivariate noise normalisation and/or
removal of the mean pattern. In a third step, the dissimilarity measures
were applied to pseudo-trials, separately for each pairwise combination
of conditions and either in a cross-validated procedure or a non-cross-
validated procedure (Fig. 1B). The first three steps were performed for
overall 20 randomized assignments of trials to pseudo-trials (permuta-
tions) and for both sessions of each participant. In a fourth and final step,
dissimilarity measures were compared. For decoding, classifiers were
compared based on average decoding accuracy (averaged across condi-
tion pairs, permutations and sessions). For RSA, dissimilarity measures
were compared by means of the session-to-session reliability of repre-
sentational dissimilarity matrices (averaged across permutations).

Pseudo-trials

To increase the signal-to-noise ratio, for each of the NC (¼92) con-
ditions we created 5 pseudo-trials by dividing randomly ordered pre-
processed raw trials into 5 approximately equinumerous partitions and
then averaging across raw trials within partitions (Fig. 1A). To minimize
effects caused by the arbitrariness of this ordering, the procedure was
repeated for 20 random orderings of raw trials (henceforth referred to as
permutations).

Optional preprocessing of pseudo-trials

Prior to MVPA, the MEG data may undergo additional preprocessing.
Here, we assessed two popular preprocessing choices: 1) noise normal-
isation to improve the quality of the data, and 2) removal of the mean
pattern to eliminate condition-nonspecific response components.
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