
Hyperedge bundling: A practical solution to spurious interactions in MEG/
EEG source connectivity analyses

Sheng H. Wang a,b,c,*, Muriel Lobier a, Felix Siebenhühner a,b, Tuomas Puoliv€ali a,b, Satu Palva a,c,
J. Matias Palva a,**

a Neuroscience Center, Helsinki Institute of Life Science (HiLife), University of Helsinki, Finland
b Doctoral Programme Brain & Mind, University of Helsinki, Finland
c BioMag Laboratory, HUS Medical Imaging Center, Helsinki, Finland

A R T I C L E I N F O

Keywords:
Signal leakage
Spurious correlation
Artificial correlation
Volume conduction
Signal mixing
Point spread
Graph theory
MEG
EEG

A B S T R A C T

Inter-areal functional connectivity (FC), neuronal synchronization in particular, is thought to constitute a key
systems-level mechanism for coordination of neuronal processing and communication between brain regions.
Evidence to support this hypothesis has been gained largely using invasive electrophysiological approaches. In
humans, neuronal activity can be non-invasively recorded only with magneto- and electroencephalography
(MEG/EEG), which have been used to assess FC networks with high temporal resolution and whole-scalp
coverage. However, even in source-reconstructed MEG/EEG data, signal mixing, or “source leakage”, is a sig-
nificant confounder for FC analyses and network localization.

Signal mixing leads to two distinct kinds of false-positive observations: artificial interactions (AI) caused
directly by mixing and spurious interactions (SI) arising indirectly from the spread of signals from true interacting
sources to nearby false loci. To date, several interaction metrics have been developed to solve the AI problem, but
the SI problem has remained largely intractable in MEG/EEG all-to-all source connectivity studies. Here, we
advance a novel approach for correcting SIs in FC analyses using source-reconstructed MEG/EEG data.

Our approach is to bundle observed FC connections into hyperedges by their adjacency in signal mixing. Using
realistic simulations, we show here that bundling yields hyperedges with good separability of true positives and
little loss in the true positive rate. Hyperedge bundling thus significantly decreases graph noise by minimizing the
false-positive to true-positive ratio. Finally, we demonstrate the advantage of edge bundling in the visualization of
large-scale cortical networks with real MEG data. We propose that hypergraphs yielded by bundling represent
well the set of true cortical interactions that are detectable and dissociable in MEG/EEG connectivity analysis.

Introduction

Large-scale neuronal networks, e.g., manifested by functional,
directed, and effective connectivity (Karl, 2011), are thought to be
critical for healthy brain functions while their abnormalities are
thought to underlie many brain diseases (Brookes et al., 2016; Bullmore
and Sporns, 2009, 2012; Fornito et al., 2015; Papo et al., 2014; Petersen
and Sporns, 2015; Rubinov 2015; Sporns, 2014; Uhlhaas and Singer
2006, 2010). Currently, magneto- and electro-encephalography
(MEG/EEG) are the only non-invasive electrophysiological tools for
studying connectivity networks with millisecond-range temporal reso-
lution and good coverage of the cortical surface (Kujala et al., 2008;

Palva and Palva, 2012; S. Baillet et al., 2001; Salmelin and Baillet,
2009). Accurately identifying interaction dynamics from MEG/EEG
data is of crucial importance for understanding their role in human
cognition and its deficits.

To date, numerous interaction metrics have been developed and
utilized to assess functional connectivity (FC) in terms of amplitude-,
phase-, and phase-amplitude correlations within or across frequency
bands for pairs of electrophysiological signals (Bastos and Schoffelen,
2016; Kreuz, 2011; O'Neill et al., 2015). These pairwise metrics are
typically applied to estimate FC among all brain regions, i.e., to obtain
“all-to-all” FC connectomes (Sporns et al., 2005). Networks of inter-areal
FC are often represented as graphs where brain areas constitute the nodes
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(or vertices) and observed inter-areal connections the edges (Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010).

FC graphs estimated from MEG/EEG sensor space data are neuro-
anatomically uninformative and severely confounded by signal mixing.
Signal mixing has two facets: first, any focal neuronal signal is picked up
by several sensors. Conversely, one sensor detects a mixture of signals
from several distinct sources. Source reconstruction can be used to reduce
signal mixing and, importantly, elucidate the likely neuroanatomical
sources of the MEG/EEG signals (Buzsaki et al., 2012; Gross et al., 2013;
Hamalainen et al., 1993; Palva and Palva, 2012; Schoffelen and Gross,
2009). Yet, because of ill-posed nature of the inverse problem, no source
reconstruction approach can yield an unambiguous estimate of the
source topography. Residual signal mixing in source space, signal
leakage, is quantitatively dependent on the source-reconstruction
method of choice but qualitatively characteristic to all such methods.

Because of signal leakage, FC measures exhibit two distinct types of
false positive observations: artificial interactions (AI) and spurious in-
teractions (SI), see Box 2 in Palva and Palva (2012). AIs arise directly from
the signal mixing by one true signal being smeared to multiple sensors or
sources, regardless of whether true interactions are present. SIs are
“ghost” interactions caused by the leakage of the signals from two true
connected nodes to their surroundings nodes that in turn become falsely
connected like the truly connected nodes (Colclough et al., 2015; Far-
ahibozorg et al., 2017; Korhonen et al., 2014; Palva et al., 2017; Palva
and Palva, 2012). AIs can be suppressed by a number of bivariate metrics
that typically aim to remove linear coupling terms, and therefore
removing artificial and true interactions with zero- and anti-phase-lag
coupling (for a review see (Palva et al., 2017)). However, the problem
of SIs is much less acknowledged and more difficult to solve because SIs
stem from multivariate mixing effects. With typical distributed source
modeling approaches, signal leakage causes a large number of SIs that
render both the network localization and graph property estimates
inaccurate (Drakesmith et al., 2015). To date, one solution has been
proposed for correcting SIs in oscillation amplitude correlation estimates,
which simultaneously orthogonalizes all source time series through the
L€owdin procedure (Colclough et al., 2015, 2016). Despite this promising
advance, no solutions have yet been proposed to suppress SIs for other
interaction metrics.

Here we advance a novel approach, hyperedge bundling, to alleviate
the SIs problem in connectivity analyses performed with any interaction
metric. Instead of correcting the mixing effects in source signals per se,
the approach is based on quantifying the extent of mixing between all
sources, evaluation of mixing similarity among all edges, and then clus-
tering the raw interaction metric edges into hyperedge bundles. This
procedure aims to yield a hypergraph where each hyperedge represents a
true interaction and its spurious reflections.

In this study, we performed a large set of connectivity simulations and
realistic all-to-all MEG source space analyses, in which we estimated
phase synchrony as a measure of FC with an AI-insensitive metric. We
show that in simulated graphs, hyperedge bundling greatly decreases the
number of false positives, i.e., SIs. We illustrated how bundling can
support an informative visualization of FC graphs with real MEG data.
We suggest that such hypergraphs constitute accurate and unbiased
representations of neuronal interactions observable in MEG/EEG source
space.

Theory

This section covers general topics as follows: signal mixing in MEG/
EEG, how spurious interactions (SI) arise from mixing between sources;
and bundling of raw edges into hyperedges. The implementations spe-
cific to this study are described in the Methods section. Throughout the
report, we denote a connectivity graph estimated from reconstructed
source time series as raw graph Graw ¼ (V, E), where brain regions are
nodes vi 2 V and interactions between nodes are “raw” edges,
ek¼ {(vi,vj)2Ejvi,vi2V}.

Signal mixing results in false positive artificial (AI) and spurious
interactions (SI)

Let us consider a scenario where a true phase correlation is present
between two distant (unmixed) sources V1 and V2 (Fig. 1A top). The
signals from V1 and V2 are mixed with signals of their nearby and
mutually uncorrelated neighbors V3 and V4. Estimating phase FC among
all four nodes with the phase-locking value (PLV) will reveal both the
true edge E(V1,V2) and false positive “short-range” AIs between the
nearby nodes E(V1,V3) and E(V2,V4), because PLV is inflated by mixing
(thick gray edges, Fig. 1A bottom). However, due to leakage of the signal
from V1 and V2 to their neighbors V3 and V4, false positive “long-range”
SIs E(V3,V4), E(V2,V3), and E(V1,V4) will also be observed (thin dashed
edges). These SIs are thus only indirectly caused by mixing and, unlike
the zero-phase-lag AIs (see 2.2), SIs inherit the phase-lag of the true
interaction (Colclough et al., 2015; Farahibozorg et al., 2017).
Mixing-insensitive bivariate metrics such as the imaginary part of PLV
(iPLV) can remove AIs but do not eliminate SIs if the true coupling has
non-zero phase lag.

Quantifying the mixing between reconstructed sources

Signal mixing/leakage between two sources is instantaneous and
therefore always leads to inflated zero-phase-lag correlations between
the sources. Mixing does not vary over time or across frequency bands
(Brookes et al., 2012, 2014; Drakesmith et al., 2013; Nolte et al., 2004;
Palva and Palva, 2012).

Source-reconstruction
Suppose we have a data matrix X¼ {x(1), x(2), …, x(n)}2ℝn�t repre-

senting narrow-band time series of t samples from n neuronal pop-
ulations. Simulating a MEG/EEG recording, X can be linearly projected to
sensor-space (H€am€al€ainen and Ilmoniemi, 1994):

Y ¼ ΓX þ ε (1)

where Y2ℝs�t represents the forward-modeled time series from s sensors
(n> s). Here, Γ 2ℝs�n is the forward operator (or the lead field) and
ε2ℝs�t is the model prediction error derived from measurement noise.
Next, Y can be projected back into the source-space, e.g., by minimum-
norm estimation (MNE) based inverse modeling:

bX ¼ WY ¼ RΓT
�
ΓRΓT þ λ2χ

��1
Y (2)

where W2ℝn�s is the inverse operator (sources� sensors), the regulari-
zation parameter λ2¼0.1, R is the source covariance matrix, and χ is the
noise covariance matrix. After inverse modeling, the 5000–10000 source
time series are collapsed into parcel time series for a cortical parcellation
with 50–400 parcels. In the present study, we used reconstruction-
accuracy optimized collapsing (Korhonen et al., 2014) and a resolution
of 400 parcels covering the whole cortex.

Cross-talk function and resolution matrix
In MEG/EEG source connectivity studies, a resolution matrix Р ¼ WΓ

(Р2ℝn�n) is often used to describe the relationship between true signals
and modeled signals from n sources in the absence of noise (Farahibozorg
et al., 2017; Hauk and Stenroos, 2014; Hauk et al., 2011; Liu et al., 2002).
In P, each diagonal element quantifies the sensitivity for estimating sig-
nals from that source. Each row of P is the “cross-talk” function (CTF) that
describes the amount of mixing between one source and all other sources.
Each column of P is a “point-spread” function (PSFs) that describes how
the modeled signal from any one source is spread across all other sources.

The mixing function
For the reconstruction accuracy (fidelity) optimized cortical parcel-

lation (Korhonen et al., 2014), we approximated the resolution matrix Р
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