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A B S T R A C T

The dynamics of the brain's intrinsic networks have been recently studied using co-activation pattern (CAP)
analysis. The CAP method relies on few model assumptions and CAP-based measurements provide quantitative
information of network temporal dynamics. One limitation of existing CAP-related methods is that the computed
CAPs share considerable spatial overlap that may or may not be functionally distinct relative to specific network
dynamics. To more accurately describe network dynamics with spatially distinct CAPs, and to compare network
dynamics between different populations, a novel data-driven CAP group analysis method is proposed in this study.
In the proposed method, a dominant-CAP (d-CAP) set is synthesized across CAPs from multiple clustering runs for
each group with the constraint of low spatial similarities among d-CAPs. Alternating d-CAPs with less overlapping
spatial patterns can better capture overall network dynamics. The number of d-CAPs, the temporal fraction and
spatial consistency of each d-CAP, and the subject-specific switching probability among all d-CAPs are then
calculated for each group and used to compare network dynamics between groups.

The spatial dissimilarities among d-CAPs computed with the proposed method were first demonstrated using
simulated data. High consistency between simulated ground-truth and computed d-CAPs was achieved, and
detailed comparisons between the proposed method and existing CAP-based methods were conducted using
simulated data. In an effort to physiologically validate the proposed technique and investigate network dynamics
in a relevant brain network disorder, the proposed method was then applied to data from the Parkinson's Pro-
gression Markers Initiative (PPMI) database to compare the network dynamics in Parkinson's disease (PD) and
normal control (NC) groups. Fewer d-CAPs, skewed distribution of temporal fractions of d-CAPs, and reduced
switching probabilities among final d-CAPs were found in most networks in the PD group, as compared to the NC
group. Furthermore, an overall negative association between switching probability among d-CAPs and disease
severity was observed in most networks in the PD group as well. These results expand upon previous findings from
in vivo electrophysiological recording studies in PD. Importantly, this novel analysis also demonstrates that
changes in network dynamics can be measured using resting-state fMRI data from subjects with early stage PD.

Introduction

In the past two decades, brain functional connectivity has been
widely studied using resting-state functional magnetic resonance imag-
ing (fMRI). Functional connectivity is most commonly assessed using the
Pearson correlation coefficient between fMRI signals from different

regions in the brain (Biswal et al., 1995). Several functional connectivity
studies have identified sets of spatial patterns that consist of temporally
correlated brain regions (Biswal et al., 1995; De Luca et al., 2005; Grei-
cius et al., 2003). These spatial patterns are called resting-state networks.
Among the most commonly studied resting-state networks are the default
mode network, sensorimotor network, visual network, auditory network
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and executive control network (Beckmann et al., 2005; Damoiseaux et
al., 2006; Smith et al., 2009). Investigating resting-state networks has
provided fundamental insight into basic neural function (Fox et al.,
2005; Smith et al., 2009). Recent studies have shown, however, that the
spatial patterns of resting-state networks may change periodically during
the epoch of an fMRI scan (Preti et al., 2017). Dynamic functional con-
nectivity analysis has been proposed to identify and investigate these
changes in functional connectivity over time (Allen et al., 2014; Hutch-
ison et al., 2013; Preti et al., 2017). Importantly, altered dynamic func-
tional connectivity has recently been reported in neurological disorders
such as schizophrenia (Damaraju et al., 2014; Yu et al., 2015), major
depression disorder (Holtzheimer and Mayberg, 2011), autism (Price et
al., 2014) and Alzheimer's disease (Jones et al., 2012), suggesting that
such network changes have pathophysiologic relevance across brain
diseases. Investigating dynamic functional connectivity in diseased
populations can thus provide vital insight related to poorly understood
dynamic brain function in these conditions, and lead to better under-
standing of disease phenotype, response to therapy, and progression.

Many methods have been proposed for dynamic functional connec-
tivity analysis, such as the sliding-window method (Chang and Glover,
2010), temporal independent component analysis (ICA) (Smith et al.,
2012), quasi-periodic pattern method (Majeed et al., 2011; Thompson et
al., 2014), and co-activation pattern analysis (Liu and Duyn, 2013). The
sliding-windowmethod captures the dynamics of functional connectivity
by gathering pairwise linear correlations among brain regions in subse-
quent temporal windows (Jones et al., 2012; Kucyi and Davis, 2014). Due
to its relative simplicity, the sliding-window method is the most widely
applied technique in dynamic functional connectivity analysis. One
technical challenge of this method, however, is the choice of the window
size. Ideally, the window size should be small enough to capture any
transients but also large enough to produce stable and statistically
powerful results (Hutchison et al., 2013). Temporal ICA decomposes the
entire fMRI time series into temporally independent components. Each
component is then defined as a distinct temporal functional mode and

used to represent the temporal dynamics of functional connectivity
(Calhoun et al., 2001; Smith et al., 2012). Temporal ICA is, however,
limited by the lack of sample points in conventional resting-state fMRI
setting, where approximately 200 time points are typically collected in a
6–10min acquisition. The Quasi-periodic pattern method identifies a
repeated spatiotemporal template within an fMRI scan (Majeed et al.,
2011; Thompson et al., 2014). This template is a set of consecutive brain
volumes represented throughout the entire scan. Dynamic functional
connectivity is then represented by spatiotemporal patterns within this
template. This method requires that the spatiotemporal pattern occurs
several times during the course of data acquisition, implying that the
quasi-periodic pattern method will only capture reproducible dynamic
functional connectivity but will miss isolated (yet still potentially
important) patterns of dynamic connectivity.

More recently, co-activation pattern (CAP) analysis has been pro-
posed by Liu and Duyn (2013) to track variations of functional connec-
tivity within each individual time frame. Instead of capturing dynamics
of whole-brain functional connectivity, the CAP analysis focuses on the
temporal dynamics of a specific resting-state network. The basis of CAP
analysis is that relevant information of a given resting-state network is
expressed by discrete time points where the fMRI signal is large (Chialvo,
2012; Tagliazucchi et al., 2011). Thus in CAP analysis, whole brain fMRI
volumes at time points with large fMRI signals are temporally clustered
using k-means into a predefined number of CAPs to reflect the dynamic
behavior of a particular resting-state network.

One advantage of this method is that CAP analysis focuses on indi-
vidual time frames and therefore does not require a large number of input
time points as compared to the analysis methods mentioned above.
Furthermore, the CAP method captures a more direct relationship be-
tween voxels as compared to the correlation-based sliding window
method (Liu and Duyn, 2013). Importantly, the CAP analysis can be
extended to whole brain analysis with the entire fMRI volume being
input into temporal clustering (Liu et al., 2013). In addition to analysis of
basic network dynamics in healthy controls, CAP analysis has also been

Fig. 1. Group CAP analysis routine.
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