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A B S T R A C T

Human behavior and cognition result from a complex pattern of interactions between brain regions. The flexible
reconfiguration of these patterns enables behavioral adaptation, such as the acquisition of a new motor skill. Yet,
the degree to which these reconfigurations depend on the brain's baseline sensorimotor integration is far from
understood. Here, we asked whether spontaneous fluctuations in sensorimotor networks at baseline were pre-
dictive of individual differences in future learning. We analyzed functional MRI data from 19 participants prior to
six weeks of training on a new motor skill. We found that visual-motor connectivity was inversely related to
learning rate: sensorimotor autonomy at baseline corresponded to faster learning in the future. Using three
additional scans, we found that visual-motor connectivity at baseline is a relatively stable individual trait. These
results suggest that individual differences in motor skill learning can be predicted from sensorimotor autonomy at
baseline prior to task execution.

Introduction

Adaptive biological systems display a common architectural feature
that facilitates evolvability (Kirschner and Gerhart, 1998; Kashtan and
Alon, 2005; F�elix and Wagner, 2008). That feature is modularity, or
near-decomposability (Simon, 1965), in which the system is composed of
small subsystems (or modules) that each perform near-unique functions.
This compartmentalization reduces the constraints on any single module,
enabling it to adapt to evolving external demands relatively indepen-
dently (Kashtan and Alon, 2005; Wagner and Altenberg, 1996; Schlosser
and Wagner, 2004). These principles relating modularity to adaptivity
are evident across the animal kingdom, offering insights into phenomena
as diverse as the developmental program of beak morphology in Darwin's
finches (Mallarino et al., 2011) and the heterochrony of the skeletal
components of the mammalian skull (Koyabu et al., 2014).

While an intuitive concept in organismal evolution where genetic
programs drive dynamics over long time scales, it is less clear how
modularity might confer functional adaptability in neural systems whose

computations are inherently transient and fleeting. To gain conceptual
clarity, we consider synchronization: a foundational neural computation
that facilitates communication across distributed neural units (Fries,
2005; Voytek et al., 2015). Evidence from the field of statistical physics
demonstrates that synchronization of a dynamical system is directly
dependent on the heterogeneity of the associations between units
(Gomez-Gardenes et al., 2007). Specifically, in systems where units with
oscillatory dynamics are coupled in local modules, each module can
synchronize separately (Arenas et al., 2006), offering the potential for
unique functionality and independent adaptability. These theoretical
observations become intuitive when we consider graphs: visual de-
pictions of nodes representing oscillators, and edges representing
coupling between oscillators (Fig. 1a). Modules that are densely inter-
connected will tend to become synchronized with one another, and each
module will therefore be unable to adapt its dynamics separately from
the other module (Arenas et al., 2006). This highly constrained state
decreases the potential for adaptability to incoming stimuli in a changing
environment. Conversely, modules that are sparsely interconnected with
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one another will maintain the potential for adaptive, near-independent
dynamics.

Given these theoretical observations in oscillator networks, we hy-
pothesize that human brains display a modular architecture for the
explicit purpose of facilitating behavioral adaptability (Meunier et al.,
2010; Bullmore et al., 2009). Such a hypothesis is bolstered by evidence
that neuronal cell distributions evolve differently in regions of the brain
that code for simpler reflexive versus more complex adaptive functions
(Lewitus et al., 2012). The hypothesis also has implications for individual
differences in cognitive ability across humans. Specifically, we expect
that individuals that display greater modularity, or sparser connectivity,
between task-specific modules should also display more behavioral
adaptability in the face of novel task demands (Bassett et al., 2011, 2013,
2015) (Fig. 1b). We expect that modularity should be particularly
important between low-level modules that must evolve independently;
connections involving higher-level control areas could have a different
relationship due to the importance of these connections in the acquisition
of new skills (Cole et al., 2013).

To test these hypotheses, we studied a cohort of healthy adult human
subjects who learned a new motor skill from visual cues over the course
of 6 weeks (Fig. 1c). During this timeframe, recorded fMRI activity
during task execution shows that learning induces a growing autonomy
betweenmotor and visual systems (Bassett et al., 2015). Here, we focused
on functional connectivity at rest acquired from the same cohort, prior to

the onset of learning. We hypothesized that individuals who display a
greater functional separation, or greater modularity, between motor and
visual modules at rest are poised for enhanced adaptability in this task,
and therefore should learn faster over the 6 weeks of practice than in-
dividuals who display less functional separation between these modules.
Further, we ask whether this baseline segregation between modules is a
trait of an individual, consistently expressed over multiple scanning
sessions, or a state of an individual, and therefore potentially responsive
to external manipulation or internal self-regulation. The answers to these
questions have direct implications for predicting and manipulating a
human's ability to adapt its behavior — or learn — in the future.

The experimental protocol comprised of 6 weeks of training on 6
distinct motor sequences. Following a brief explanation of the task in-
structions, an initial MRI scan session was held during which blood-ox-
ygen-level-dependent (BOLD) signals were acquired from each
participant. The session began with a resting state scan lasting 5min
where participants were instructed to remain awake and with eyes open
without fixation. During the remainder of the first scan session (baseline
training), participants practiced each of 6 distinct motor sequences in a
discrete sequence production (DSP) task for 50 trials each, or approxi-
mately 1.5 hr. Participants were then instructed to continue practicing
the motor sequences at home using a training module that was installed
by the experimenter (N.F.W.) on their personal laptops. Participants
completed a minimum of 30 home training sessions, which were

Fig. 1. Network dynamics constrain adaptive learning behavior. (a) The degree of connectivity between two modules can impose important constraints on
the types of dynamics that are possible. A lower degree of statistical dependence between the activity profiles of two modules can allow for greater flexibility in
module dynamics. (b) Learning a new motor skill — a sequence of finger movements — induces a progressive change in the connectivity between visual and
somato-motor cortices in humans (Bassett et al., 2015). We hypothesize that individuals who display a greater functional separation, or greater modularity,
between motor and visual modules at rest are poised for enhanced adaptability, and therefore will learn faster over 6 weeks of practice than individuals who
display less functional separation between these modules. (c) Time in seconds required to correctly perform each sequence of finger movements (here referred to
as movement time) for two example human subjects over 6 weeks of training. We observe an exponential decay in the trial-by-trial movement times for all
participants (black lines), indicating that learning is occurring. The exponential drop-off parameter of a two-term exponential fit (red line) quantifies how rapidly
each participant learned. Left and right panels illustrate the fits for an example slow and fast learner, respectively. (d) On each trial, the initial stimulus indicated
which sequence should be performed. Each correct key press led to the next stimulus cue until the ten-element sequence was correctly executed. At any point, if an
incorrect key was hit, a participant would receive an error signal (not shown in the figure), and the sequence would pause until the correct response was received.
(e) Stimulus-response mapping between a conventional keyboard or an MRI-compatible button box (lower left) and a participant's right hand. (f) Training
occurred over the course of 30 or more behavioral training sessions spanning approximately 42 days. Participants were scanned on the first day of the experiment
and on three other occasions spaced approximately 1.5–2 weeks apart. Each scan session began with a 5 min resting state scan.
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