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A B S T R A C T

We introduce a new approach to Bayesian pRF model estimation using Markov Chain Monte Carlo (MCMC)
sampling for simultaneous estimation of pRF and hemodynamic parameters. To obtain high performance on
commonly accessible hardware we present a novel heuristic consisting of interpolation between precomputed
responses for predetermined stimuli and a large cross-section of receptive field parameters. We investigate the
validity of the proposed approach with respect to MCMC convergence, tuning and biases. We compare different
combinations of pRF - Compressive Spatial Summation (CSS), Dumoulin-Wandell (DW) and hemodynamic (5-
parameter and 3-parameter Balloon-Windkessel) models within our framework with and without the usage of the
new heuristic. We evaluate estimation consistency and log probability across models. We perform as well a
comparison of one model with and without lookup table within the RStan framework using its No-U-Turn
Sampler. We present accelerated computation of whole-ROI parameters for one subject. Finally, we discuss
risks and limitations associated with the usage of the new heuristic as well as the means of resolving them. We
found that the new algorithm is a valid sampling approach to joint pRF/hemodynamic parameter estimation and
that it exhibits very high performance.

Introduction

Modelling is an important domain of science in general and a recurring
topic in population receptive field (pRF) research in particular, where
functional magnetic resonance imaging (fMRI) serves as evidence acqui-
sition method. Classical approaches such as those by Dumoulin and
Wandell (2008) and Kay et al. (2013) focus on point estimates of param-
eters in predefined models motivated by physiology and empirical evi-
dence. In the recent work of Zeidman et al. (2016) authors introduce the
formalism of BayesianModel Selection in order to root pRFmodel choices
in an objective quantitative measure such as Variational Free Energy.
Furthermore, the proposed formulation employs a Balloon-Windkessel
model for joint estimation of pRF and hemodynamic parameters. The
main limitation of this approach lies in the assumption about the form of
the posterior distributionof parameters, in this caseGaussian. Themethod
is characterized as well by high computational requirements – the refer-
ence implementation of the algorithm is reported to require about 100 s

per voxel to converge which renders its use problematic on modern PCs
with exception of high-end multi-core cluster setups (the authors give an
example of 192-core cluster used to estimate 14,395 voxels) or small re-
gions of interest. A Bayesian approach using slice-sampling Monte Carlo
method with fixed Hemodynamic Response Function (HRF) was recently
described in Quax et al. (2016). Similarly to the variational method the
sampling approach quantifies how variable the underlying receptive field
is by using the uncertainty of the posterior estimate except with the added
advantageof not imposing anyparticular formon theposterior probability
distribution. The authors underline the importance of their method's
capability to estimate variability – rendered particularly relevant by the
fact that receptive fields are not rigid over time, but can change due to
attention effects or task demands (Klein et al., 2014). The main contri-
bution of our work is a new approach to Bayesian pRF model estimation
combining the best characteristics of the abovemethods – inclusion of the
Balloon-Windkessel hemodynamic model, Dumoulin-Wandell and
compressive spatial summation (CSS) pRF models and using sampling for
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model inversion therefore not imposing any form on the posterior.
Furthermore in order to address potential obstacles due to high perfor-
mance requirements we introduce a novel heuristic for solving the
Dumoulin-Wandell pRFmodelbyusing interpolation across a lookup table
containing precomputed responses for given stimuli and a large number of
predefined receptive field parameters. This enables us to massively par-
allelize the algorithm using a graphics processing unit (GPU) imple-
mentation of the Markov Chain Monte Carlo (MCMC) scheme. Our
algorithmoffers choice betweenexistingpRFmodels –Dumoulin-Wandell
model (Dumoulin andWandell, 2008) and compressive spatial summation
(CSS) model of pRF introduced in Kay et al. (2013) and for BOLD gener-
ation betweenwell-established Balloon-Windkessel model (Buxton et al.,
1998; Friston et al., 2000; Irikura et al., 1994; Mayhew et al., 1998), its
3-parameter version (Stephan et al., 2007) used in the recent imple-
mentation of Dynamic Causal Modelling (DCM) in Statistical Parametric
Mapping (SPM) toolbox as well as a fixed user-provided HRF. Our algo-
rithm is presented and discussed along with introduction of QPrf – its
freely available implementation in the form of a standalone toolbox
(https://github.com/sadaszewski/qprf) available with source code under
the terms of GNU GPLv3 license. We demonstrate
CSS-pRF/Balloon-Windkessel model inversion using the new heuristic
and compare it to a classical two-stagemethod. Furthermore, we compare
different combinations of pRF (CSS, classical Dumoulin-Wandell) and
hemodynamic (5-parameter and 3-parameter Balloon) models within
QPrf andagainst existingBayesian inversion software (BayespRF). Finally,
we discuss risks and limitations associatedwith usage of the new heuristic
as well as means of resolving them.

Visual field mapping consists of measuring responses to rings and
wedges stimuli presented at varying visual field locations. Within each
voxel the experimenter estimates the visual field position that produces
the largest fMRI response.However, in reality the populationof neurons in
such voxel responds (with varying intensity) to a whole range of visual
field locations. The regionof visual space that stimulates the voxel is called
the population receptivefield (pRF) (Victor et al., 1994). The pRFmethod
can provide estimates for receptive field location, size, orientation, lat-
erality and surround suppression (Kay et al., 2013; Zeidman et al., 2016).
To this end a series of stimuli is specifically designed to differentiate be-
tween the above parameters. Temporal responses are then used to fit
model values with best support from the observed data (evidence).

In Dumoulin and Wandell (2008) the authors propose a quantitative
approach for estimating population receptive field (pRF) parameters
using a model-based coarse-to-fine optimization scheme. The pRF model
is defined as two-dimensional Gaussian withmeans corresponding to pRF
position in the visual field and a scalar covariance matrix with diagonal
values equal to (pRF size)2. Subsequently, model parameters are varied in
order to match functional magnetic resonance imaging (fMRI) time series
obtained using wedges, rings and lines stimuli displayed in a series of
animations. In order to do so - Frobenius inner product of stimuli and pRF
Gaussian is convolved with a space-invariant hemodynamic response
function (HRF) and the residual sum of squares (RSS) between the
simulation and the data is iteratively minimized starting from a seed
point determined by exhaustive search on predefined parameter grid.

This model is the base for further elaboration in Kay et al. (2013)
leading to the compressive spatial summation (CSS) approach. While
measuring BOLD responses to a set of contrast patterns, the authors
discover systematic deviation from linearity. The data are more accu-
rately explained by a model in which a compressive static nonlinearity is
applied after linear spatial summation. The authors conclude that the
nonlinearity is present in early visual areas (e.g., V1, V2) and increases in
anterior extrastriate areas (e.g., LO-2, VO-2). The effect of compressive
spatial summation has been analyzed in terms of changes in the position
and size of a viewed object. It is stated that compressive spatial sum-
mation is consistent with tolerance to changes in position and size, an
important characteristic of object representation. A similar grid-based
fitting approach is used for estimating parameters of the CSS-extended
pRF model.

The CSS-pRF approach is characterized by simplicity and relatively
good speed/accuracy of fit in most cases. Some of its shortcomings
however are that it: i. provides only point estimates of the parameters; ii.
does not account for spatial HRF variation (which, as acknowledged by
the authors, may introduce systematic errors in pRF size estimates); iii.
uses an explicit HRF model based on two gamma functions which do not
allow for robust estimation of more informative hemodynamic parame-
ters introduced by the Balloon-Windkessel model (Buxton et al., 1998).

The advancement proposed by this work is a Bayesian approach to
joint estimation of pRF and hemodynamic parameters full posterior
distributions using a forward signal generation model and Markov Chain
Monte Carlo (MCMC) sampling. Furthermore, due to the computational
costs incurred by MCMC, an optimized implementation using OpenCL is
presented which allows one to take advantage of modern Graphics Pro-
cessing Units (GPUs) in order to keep the processing timewithin the same
order of magnitude as previous method while providing richer and more
robust results.

Materials and methods

PRF model

A population receptive field (pRF) is the region of the visual field
within which stimuli evoke responses from a local population of neurons.
In Dumoulin and Wandell (2008) the authors proposed a model of
neuronal population receptive field defined by a two-dimensional
Gaussian function:

gðx; yÞ ¼ e�
ðx�x0Þ2þðy�y0Þ2

2σ2 (1)

where (x0, y0) is the receptive field center and σ is the Gaussian standard
deviation. Subsequently, the predicted pRF response r(t) is defined as
sum of cells in element-wise (Hadamard) product of effective stimulus
s(x, y, t) and the Gaussian g(x, y):

rðtÞ ¼
X
x; y

sðx; y; tÞgðx; yÞ (2)

The BOLD signal time series prediction p(t) is then obtained by
convolving r(t)with amodel hemodynamic response function (HRF) h(t):

pðtÞ ¼ rðtÞ*hðtÞ (3)

This model is further elaborated in Kay et al. (2013) leading to
compressive spatial summation (CSS) approach (Fig. 1), which defines
r(t) as:

rðtÞ ¼ g

 X
x;y

sðx; y; tÞgðx; yÞ
!n

(4)

where g is a gain parameter and n is an exponent parameter. This addi-
tional compressive static nonlinearity has been proven to better explain
experimental data.

In contrast to previous studies, we use the CSS component for
modelling the pRF response but instead of using convolution with a
spatially invariant canonical HRF to obtain the predicted BOLD time
series in [3], we employ the Balloon-Windkessel model described in the
following section. We do this to account for per-voxel variability of pa-
rameters determining hemodynamic response.

Balloon-Windkessel model

The hemodynamic model (Fig. 2) used in this study is a combination
of the Balloon model and regional cerebral blood flow (rCBF) model as
introduced in Friston et al. (2000) and used for dynamic causal modelling
(Friston et al., 2003). The remainder of this section contains a brief
summary of the model.
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