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A B S T R A C T

Exploring neuroanatomical sex differences using a multivariate statistical learning approach can yield insights that
cannot be derived with univariate analysis. While gross differences in total brain volume are well-established,
uncovering the more subtle, regional sex-related differences in neuroanatomy requires a multivariate approach
that can accurately model spatial complexity as well as the interactions between neuroanatomical features. Here, we
developed a multivariate statistical learning model using a support vector machine (SVM) classifier to predict sex
from MRI-derived regional neuroanatomical features from a single-site study of 967 healthy youth from the Phil-
adelphia Neurodevelopmental Cohort (PNC). Then, we validated the multivariate model on an independent dataset
of 682 healthy youth from the multi-site Pediatric Imaging, Neurocognition and Genetics (PING) cohort study. The
trained model exhibited an 83% cross-validated prediction accuracy, and correctly predicted the sex of 77% of the
subjects from the independent multi-site dataset. Results showed that cortical thickness of the middle occipital lobes
and the angular gyri are major predictors of sex. Results also demonstrated the inferential benefits of going beyond
classical regression approaches to capture the interactions among brain features in order to better characterize sex
differences in male and female youths. We also identified specific cortical morphological measures and parcellation
techniques, such as cortical thickness as derived from the Destrieux atlas, that are better able to discriminate between
males and females in comparison to other brain atlases (Desikan-Killiany, Brodmann and subcortical atlases).

Introduction

The study of sex differences is of considerable scientific interest.
Previous work has discovered links between sex differences and many
phenotypic traits, such as behavior and susceptibility to disease (Gobi-
nath et al., 2017; Rutter et al., 2003). In fact, several neuropsychiatric
and developmental disorders manifest differently in males and females.
For example, autism spectrum disorders (ASD), attention deficit and
hyperactivity disorder (ADHD) and oppositional defiant disorder are
more common in males (Baron-Cohen et al., 2011; Munkvold et al., 2011;
Nøvik et al., 2006); while depression and anxiety are more prevalent in

females (Schuch et al., 2014; Altemus et al., 2014). Moreover, because
cognitive processes are rooted in neuronal architecture, the evaluation of
sex differences in brain structure may provide a neuroanatomical basis
for the sex differences in behavior and susceptibility to certain psychi-
atric disorders (Baron-Cohen et al., 2005; Gur et al., 1999; Gur and Gur,
2016). Specifically, identification of neurological structures underlying
sexually dimorphic relationships may provide important insight into
disease etiology and potential targets for treatment.

Previous studies of brain structure in vivo using magnetic resonance
imaging (MRI) have revealed consistent differences in whole brain tissue
volume between the sexes, with total brain volume significantly larger in
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males compared to females across all ages (Giedd et al., 1997; Goldstein,
2001; Gur and Gur, 2016; Ingalhalikar et al., 2014; Nopoulos et al., 2000;
Ritchie et al., 2017). While these gross neuroanatomical differences are
well-documented, more subtle regional differences in brain architecture
are unclear. Previous studies using univariate parametric approaches,
such as voxel-based morphometry (VBM), have yielded mixed results in
cortical and subcortical structures, such as the amygdala (Andreano and
Cahill, 2009; Hines, 2010; Marwha et al., 2017; Ruigrok et al., 2014),
hippocampus (Cahill, 2006; Neufang et al., 2009; Ruigrok et al., 2014;
Tan et al., 2016), and thalamus (Koolschijn and Crone, 2013; Ruigrok
et al., 2014; Sowell et al., 2002). Discrepancies between studies could be
due to differences in methodology, such as using different age ranges or
different sample sizes. However, perhaps more fundamentally, the dif-
ferences between studies could be due to the limitations inherent in using
a univariate approach to studying sex differences. Because univariate
methods neglect interactions between neuroanatomical features, they
fail to account for differences with high spatially complexity (Davatzikos,
2004). This limitation could be overcome by employing a multivariate
model; however, incorporating too many covariates into a generalized
linear model (GLM) is not recommended, because high-dimensional
modeling requires prohibitively large number of observations
(Bellman, 1957; Hastie et al., 2009).

Compared to GLM approaches, multivariate statistical learning may
have several advantages in establishing neuroanatomical differences be-
tween various groups, including the sexes. Specifically, multivariate sta-
tistical learning is theoretically a better approach since the problem of
dimensionality can be overcome by considering the high-dimensional
morphological profile as a single entity and optimizing parameters in
order to reduce dimensionality (Davatzikos, 2004; Rosenblatt, 2016).
Specifically, linear support vector machine (SVM) classifiers have been
used to identify group differences in neuroimaging features for several
neurological disorders (Bendfeldt et al., 2012; Ecker et al., 2010; Wendler,
2013). Also, studies using SVM classifiers have shown a correlation be-
tween age-related and sex-related differences in brain connectivity and
cognition (Satterthwaite et al., 2015; Tunc et al., 2016). Thus, a multi-
variate approach using SVM may be especially useful for identifying neu-
roimaging features that reflect distinct neuroantomic differences between
the sexes (Chekroud et al., 2016; Del et al., 2016; Rosenblatt, 2016), not
previously detected using explanatory analysis (Joel et al., 2015).

To date, only a few studies have used multivariate classification
approach to look at neuroanatomical differences between males and fe-
males. Wang et al. established discriminative neuroanatomical maps be-
tween sexes from anatomical and functional neuroimaging datasets of 140
healthy subjects (70 females, age range: 18–26)utilizing anSVMvoxel-wise
approach (i.e. each voxel was treated as a feature) (Wang et al., 2012).
Similarly, Feis et al. created sex discriminative maps from anatomical and
diffusion imaging datasets of 121 healthy subjects (67 females, age range:
20–30) using a voxel-based SVM approach (Feis et al., 2013). Both studies
evaluated accuracy of the model in predicting an individual's sex using
cross-validation (CV) on the same cohort (CV accuracies of 96% and 89%,
respectively). However, limitations common to both of these studies were
relatively small sample size and failure to test themodel on an independent
dataset. Furthermore,while both studies examined features on a voxel-wise
level, it may also be valuable to identify regional neuroanatomical differ-
ences that can be used to discriminate between sexes.

The current study aims to expand upon previous findings in order to
identify differences in regional neuroanatomical features between the
sexes derived from structural MRI datasets of 967 youth (age range:
8–22) using a multivariate model tested on an independent multi-site
cohort of 682 children and youth (age range: 3–21). Specifically, we
built a linear SVM classifier comprised of cortical features, including
curvature, thickness, volume and surface area, extracted from standard
atlases. The SVM model for sex classification was first developed using
the large single-site Philadelphia Neurodevelopmental Cohort (PNC)
study (Satterthwaite et al., 2016, 2014), and then validated by applying it
to the independent, multi-site Pediatric Imaging, Neurocognition and

Genetics (PING) dataset (http://ping.chd.ucsd.edu/). The statistical pa-
rameters derived from applying our model to this dataset were compared
against those derived from GLM. In summary, the methodology outlined
in this study aims to do the following: quantify neuroanatomical differ-
ences between sexes using a multivariate SVM classifier model based on
cortical morphology, determine to what extent these sex-related differ-
ences derived from this multivariate approach coincide and/or differ
with those obtained from a GLM-based approach.

Materials and methods

We utilized the Big Data for Discovery Science (BDDS: http://bd2k.
ini.usc.edu) (Toga et al., 2015) toolset to pre-process datasets from two
independent cross-sectional youth cohorts (one single-site and one
multi-site). Support vector machine (SVM) classification with a linear
kernel was applied to the single-site cohort dataset to build a model for
sex classification based solely on neuroimaging features. The generaliz-
ability of this model was tested on the independent, multi-site dataset
(n¼ 682). We then compared the parameters derived from this SVM
model to the statistical measures obtained from conventional generalized
linear models (GLM). The source code for all the statistical analyses,
including multivariate statistical learning and independent validation on
the PING dataset, as well as GLM analysis is available on GitHub (https://
github.com/sepehrband/Mining_NeuroAnat).

Datasets

Inferential and exploratory (i.e. training) analyses were performed on
the Philadelphia Neurodevelopmental Cohort (PNC) dataset. The Pedi-
atric Imaging, Neurocognition and Genetic (PING) dataset was used only
as an independent dataset for testing the generalizability of the multi-
variate statistical learning model.

PNC dataset
Cross-sectional neuroimaging data from 997 healthy subjects from

the PNC, ages 8–21 years (mean age � SD¼ 14.64 � 3.44 y), including
512 females, were acquired through the database of Genotypes and
Phenotypes (dbGaP) (Satterthwaite et al., 2016, 2014). Detailed acqui-
sition parameters are described elsewhere (Satterthwaite et al., 2014).
For this study, we used the three-dimensional (3D) T1-weighted struc-
tural MRI scans, acquired using a T1-weighted magnetization prepared,
rapid-acquisition gradient-echo (MPRAGE) sequence with the following
parameters: TR¼ 1810ms, TE¼ 3.5ms, FOV¼ 180� 240mm2, ma-
trix¼ 256� 192, 160 slices, TI¼ 1100ms, flip angle¼ 9�, effective voxel
resolution¼ 0.9� 0.9� 1mm3. For the PNC subjects, all data were
collected using the same protocol on the same scanner (3T Siemens Tim
Trio whole-body MRI, Erlangen, Germany; with 32-channel head coil).
Of the 997 subjects, 30 subjects (14 females) were excluded because of
missing demographic data, poor raw image quality, or failure in
pre-processing, leaving 967 subjects for the present analysis. De-
mographics of the subjects included is presented in Table 1.

PING dataset
Cross-sectional structural T1-weighted MRI images were acquired

Table 1
Demographics of the subjects included from the Philadelphia Neurodevelopmental Cohort
(PNC) and the Pediatric Imaging, Neurocognition and Genetic (PING) datasets.

Dataset Number Mean age (SD) Age range

PNC 967 14.7 (3.4) 8.3–22.6
Female 498 15.0 (3.4) 8.6–22.6
Male 469 14.4 (3.5) 8.3–21.7

PING 682 12.0 (5.0) 3.2–21.0
Female 322 12.1 (5.1) 3.2–21.0
Male 360 12.0 (4.9) 3.2–21.0
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