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A B S T R A C T

Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical
techniques employed in its estimation. Methods that pool information across subjects to inform estimation of
subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC.
However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches
typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the
need for repeated measures by proposing a novel measurement error model for FC describing the different sources
of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group
average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased es-
timates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient
(ICCMSE) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to
test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity
between 100 regions identified through independent components analysis (ICA). We consider both correlation
and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the
effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reli-
ability than traditional estimates across various scan durations, even for the most reliable connections and
regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the
choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a
narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial
correlations.

Introduction

Measurement reliability is a persistent concern in psychological sci-
ence (Button et al., 2013; Munaf�o et al., 2014; Collaboration, 2015).
Functional connectivity (FC) of the brain, as measured using resting-state
functional magnetic resonance imaging (rs-fMRI), is no exception
(Shehzad et al., 2009). Driven by the growing role of subject-level FC
estimates in fingerprinting (Finn et al., 2015; Airan et al., 2016), preci-
sion functional connectomics (Gordon et al., 2017), brain-behavior

studies (Smith et al., 2015), and surgical planning (Tie et al., 2014),
determining the best practices for reliable estimation of FC is an impor-
tant and ongoing topic of research (e.g., Anderson et al., 2011; Birn et al.,
2013; Laumann et al., 2015; Noble et al., 2017b). An analysis technique
that has been shown to improve reliability of subject-level FC and related
measures is shrinkage, a statistical estimation method in which individual
observations “borrow strength” from a larger group of observations (Su
et al., 2008; Varoquaux et al., 2010; Shou et al., 2014; Mejia et al., 2015;
Dai et al., 2016; Chong et al., 2017; Rahim et al., 2017).
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Shrinkage belongs to the more general family of Bayesian approaches.
Fully Bayesian approaches, such as that proposed byWarnick et al. (2017),
use a latent variable model in which the unknown connectivity for each
subject gives rise to the unobserved “true” time series plus random noise,
and subjects are drawn from some population distribution. In this frame-
work, prior distributions are assumed on the parameters controlling the
population distribution and the random noise, including the variance
within and across subjects. Bayesian computation techniques like Markov
chain Monte Carlo (MCMC) or variational Bayes (VB) are used to estimate
or sample from the posterior distribution of each parameter and latent
variable in the model. The posterior distribution of the connectivity for
each subject can then be used to obtain estimates through the posterior
mode as well as inference through the posterior quantiles.

Since fully Bayesian approaches tend to be computationally intensive,
empirical Bayesian approaches are often employed as an efficient and
convenient alternative. In the empirical Bayesian framework, certain
parameters are estimated a-priori using the data or prior knowledge
obtained from existing studies. Given these parameter estimates, the
desired posterior quantities often have a closed-form solution, greatly
facilitating computation. Empirical Bayes shrinkage estimators are an
example of this approach and result from assuming a measurement error
model on a set of estimates. For example, in our case of a Gaussian
population prior with independent Gaussian errors, the empirical Bayes
shrinkage estimates are weighted combinations of the subject-level
observation and the group average, where the degree of shrinkage to-
wards the group average that gives rise to the posterior mean and min-
imizes mean squared error (MSE) relative to the truth is equal to the ratio
of within-subject variance to total (within-subject plus between-subject)
variance (James and Stein, 1961; Efron and Morris, 1975). Therefore,
lower within-subject variance combined with higher between-subject
variance leads to less shrinkage of subject-level estimates toward the
group, while higher within-subject variance and lower between-subject
variance leads to greater shrinkage.

Previous work has clearly illustrated the benefits of shrinkage, with
25–30% gain in reliability of subject-level connectivity (Varoquaux et al.,
2010; Shou et al., 2014; Dai et al., 2016; Rahim et al., 2017) and parcel-
lations (Mejia et al., 2015; Chong et al., 2017). However, estimating the
relevant variance components to determine the degree of shrinkage has
typically relied on having access to repeated measures through test-retest
fMRI data. This limits the applicability of shrinkage methods, since in
many studies only a single rs-fMRI session is available for most if not all
subjects, and even if multiple sessions were available one would want to
utilize the full data available for each subject to improve estimation.

In this work, we propose a novel method to compute empirical Bayes
shrinkage estimates of FC, where the degree of shrinkage is determined
using single-session fMRI data. Previous work has proposed using
“pseudo test-retest” data, in which a single scanning session is split into
two contiguous sub-sessions, as a proxy for inter-session variance (Mejia
et al., 2015; Mueller et al., 2015). However, this will tend to overestimate
the sampling variance of FC, since fewer time points are used in its
estimation. In Mejia et al. (2015), we proposed using an empirically
determined adjustment factor to correct for this, but the generalizability
of such an approach is limited. Here, we instead propose a measurement
error model for FC and describe how this model can be used to estimate
within-subject variance of FC using single-session fMRI data. Leveraging
recent developments in the study of moment-to-moment changes in FC,
this model assumes that within-subject variance of FC comes not only
from sampling error, but from changes in true FC over time, i.e. dynamic
connectivity (Allen et al., 2014). The measurement error model, resulting
shrinkage estimator, and variance component estimation techniques are
described in the Methods section.

Assessing the reliability of shrinkage estimates is also a challenge,
since the intra-class correlation coefficient (ICC), a commonly used and
interpretable reliability metric, is not appropriate for biased estimators.
Therefore, most reliability studies for shrinkage estimates have relied on
mean squared error (MSE) using simulations or test-retest fMRI data to

illustrate the gains in reliability due to shrinkage. However, MSE is
sensitive to measurement scale and lacks the convenient interpretation of
ICC, which ranges from 0 to 1 and represents the proportion of variance
in the observations due to true between-subject differences rather than
within-subject error or deviation. We therefore propose combining ICC
and MSE into a novel reliability measure for biased or unbiased estima-
tors, ICCMSE. ICCMSE is equal to ICC for unbiased estimators but is also
appropriate for biased estimators and allows for fair and intuitive com-
parison between shrinkage and traditional estimators. We motivate and
describe this measure in the Methods section.

Finally, we explore the role of scan duration in reliability of both
shrinkage and traditional estimates of FC, as the effect of scan duration
on reliability of FC is a topic of much recent interest (e.g., Shehzad et al.,
2009; Van Dijk et al., 2010; Anderson et al., 2011; Birn et al., 2013;
Laumann et al., 2015; Noble et al., 2017a). Several recent studies have
also observed substantial differences in reliability across connections. For
example, connections within the default mode network (DMN) have been
found to exhibit particularly high reliability even for short scan duration,
while connections involving the motor network tend to exhibit poor
reliability (Shehzad et al., 2009; Van Dijk et al., 2010; Anderson et al.,
2011; Laumann et al., 2015; Mueller et al., 2015; Finn et al., 2015).
Therefore, we also explore the relationship between scan duration and
reliability for connections within different resting-state networks. In
addition, most of the extant literature on the relationship between scan
duration and FC reliability uses Pearson correlation coefficients as the
primary measure of the degree of connectivity between brain regions.
The issue of sufficient scan duration deserves greater investigation in the
context of partial correlations, which are becoming increasingly popular
for their ability to distinguish between brain regions that are directly
versus indirectly correlated (Smith et al., 2011, 2015; Varoquaux and
Craddock, 2013; Wang et al., 2016).

We perform a reliability analysis using data from the Human Con-
nectome Project (HCP) to examine the role of scan duration, shrinkage,
and connectivity measure (full and partial correlation) on reliability of
functional connectivity. The HCP is ideal for this analysis due to its large
sample size and relatively long duration of rs-fMRI scans. We assess reli-
ability at multiple levels: omnibus reliability over all connections, reli-
ability of within-network connections, reliability of all connections with a
particular seed, and reliability of individual connections. This multi-
resolution approach provides a more complete picture of reliability and
illustrates that reliability of FC is more complex than a single measure can
detect. For estimating partial correlations through ridge regression, wefirst
perform a reliability study to assess the impact of the regularization
parameter, ρ. We find that certain values of ρ lead to partial correlation
estimates with improved reliability for particular connections but worse
reliability overall compared with full correlations. Notably, we find that
common choices of ρ, such as 0.01, lead to partial correlations with much
worse reliability than full correlations. The reliability study is described in
Section 3, and We conclude with a discussion.

Methods

Empirical Bayes shrinkage using single-session data

Let q ¼ 1;…;Q index the nodes (voxels, vertices or regions) between
which we wish to estimate pairwise connectivity, and consider a single
pair of nodes q and q0. The overall estimate of FC obtained from an fMRI
session is often referred to as static connectivity, in contrast to dynamic
connectivity across the session. As we describe in the next section,
considering static connectivity as an average over a dynamic connectivity
time series enables us to use the central limit theorem to model and es-
timate the relevant variance components. Hereafter, the measure of FC is
assumed to be Fisher-transformed correlation or partial correlation.

A measurement error model for functional connectivity
Assume here that all subjects have the same scan duration, and let
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