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A B S T R A C T

The human neocortex shows a considerable individual structural variability. While primary gyri and sulci are
found in all normally developed brains and bear clear-cut gross structural descriptions, secondary structures are
highly variable and not present in all brains. The blend of common and individual structures poses challenges
when comparing structural and functional results from quantitative neuroimaging studies across individuals, and
sets limits on the precision of location information much above the spatial resolution of current neuroimaging
methods. This work aimed at quantifying structural variability on the neocortex, and at assessing the spatial
relationship between regions common to all brains and their individual structural variants. Based on structural
MRI data provided as the “900 Subjects Release” of the Human Connectome Project, a data-driven analytic
approach was employed here from which the definition of seven cortical “communities” emerged. Apparently,
these communities comprise common regions of structural features, while the individual variability is confined
within a community. Similarities between the community structure and the state of the brain development at
gestation week 32 lead suggest that communities are segregated early. Subdividing the neocortex into commu-
nities is suggested as anatomically more meaningful than the traditional lobar structure.

Introduction

The current neuro-anatomical ontology (NeuroNames, 2010; Swan-
son, 2015) is based on the traditional abstraction from visual observation
rather than quantitative, data-driven evidence. Considerable training is
required for a human observer to recognize neocortical structures. Dif-
ficulties arise from the well-known fact that even primary
macro-anatomical features show a remarkable structural variability, and
secondary features may be prevalent in some individuals only. An
abundance of neuro-anatomical literature describes detailed variation
(e.g., of the operculum: Ayberk et al., 2012; Idowu et al., 2014; or sulcal
patterns: Ono et al., 1990). However, a quantitative assessment of vari-
ation patterns is missing that may lead to a deeper understanding of the
relationship between common and variable structures on the human
neocortex.

This variability renders approaches for an automated quantification
of neocortical structures as difficult. Digital brain atlases have been
developed to aid the communication and registration of neuro-scientific
information with increasing levels of sophistication (Brett et al., 2001;
Evans et al., 2012; Shattuck et al., 2008; Talairach and Tournoux, 1988).
These image-based approaches contain exemplary, generic information
with (some) population-based but not individual variation. Manual

outlining is still considered as the reference method for a precise seg-
mentation of brain structures. Diligent procedures were developed that
guide the delineation of macroscopic anatomy in individual brains (Klein
and Tourville, 2012; Shattuck et al., 2008).

In contrast, several approaches were developed to represent
anatomically meaningful, individual features of the neocortical surface in
symbolic format. Most notably, Regis et al. (1995, 2005) introduced the
concept of “sulcal roots” (or “pits”) that correspond to locally deepest
points of neocortical sulci. Lohmann and von Cramon (2000) developed a
method for segmenting cortical patches as catchment basins centered at a
sulcal roots. In a later publication, Lohmann et al. (2008) used gyral
landmarks to define a common anatomical framework, into which sulcal
pits were mapped. They describe 11 regional groups of major (deep) pits,
and a larger set of minor (shallow) pits. Im et al. (2014) proposed a more
refined approach to segment sulcal pits, and used a surface-based
nonlinear atlas of sulcal patterns to map pits into a common space on a
unit sphere. They selected deep pits manually, and segregated a map of
48 pit clusters that may serve as stable anatomical landmarks. We and
others (Cachia et al., 2003; Yang and Kruggel, 2008) developed systems
that use a derived network of neocortical patches to detect and label
neocortical landmarks by symbolic pattern matching and learning pro-
cesses. Auzias et al. (2013, 2015) picked up an idea already indicated by

* 202 Rockwell Engineering Center, University of California, Irvine, CA 92697-2755, USA.
E-mail address: fkruggel@uci.edu.

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

https://doi.org/10.1016/j.neuroimage.2018.01.074
Received 8 November 2017; Accepted 29 January 2018
Available online 2 February 2018
1053-8119/© 2018 Elsevier Inc. All rights reserved.

NeuroImage 172 (2018) 620–630

mailto:fkruggel@uci.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2018.01.074&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2018.01.074
https://doi.org/10.1016/j.neuroimage.2018.01.074
https://doi.org/10.1016/j.neuroimage.2018.01.074


Lohmann et al. (2008) that sulcal pits are arranged in concentric chains
along the anterior-posterior axis of the brain, folding into the temporal
lobe. They propose a longitude/latitude scheme between an insular and a
cingular pole for parameterizing the neocortical surface, and devise a
nonlinear mapping to align sulcal bottom lines across individuals.

It has long been noted that deep primary convolutions of the
neocortex develop first, and are less variable than more shallow, sec-
ondary folds that appear later (for a review, refer to Welker, 1990),
suggesting that the development of primary structures is under tighter
genetic control. While mathematical modeling (Toro and Burnod, 2005)
demonstrated that the development of cortical convolutions is a conse-
quence of cortical growth, the development of thalamo- and
cortico-cortical connections determine the segregation of neocortical
space (e.g., Rakic, 1988, 2004; Welker, 1990), and contribute to the
definition of the folding pattern. Thus, it has been hypothesized that deep
sulcal pits develop first and are more invariant than shallow ones across
individuals. The early structural development of the human brain was
recently studied by in utero MRI (Dubois et al., 2008; Habas et al., 2012).
The study of cortical curvature maps derived from this imaging data
confirm that major folds develop between gestation week 22 and 28.
Meng et al. (2014), analyzed data acquired in a large-scale longitudinal
study of the cortical development in infants from 0 to 2 years of age, and
studied spatial distribution and temporal development of deep sulcal
landmarks in a critical period of brain development. A recent study
confirmed a genetic influence on the formation of sulcal pits (Le Guen
et al., 2017), albeit with moderate heritability estimates between 0.2 and
0.5.

Several studies (Lohmann et al., 2008; Im et al., 2014; Meng et al.,
2014; Nie et al., 2012; Auzias et al., 2015) used sulcal pits as landmarks
on the cortical surface. All employed different nonlinear registration
procedures to reduce the inter-individual variability for deriving clusters
of sulcal pits. The analytic approach described here retained the indi-
vidual variability, and avoided using arguable features or anatomical
models underlying nonlinear registration procedures. To quantify struc-
tural patterns, we segmented the neocortical surface into disjoint patches
centered around pits, termed basins (Yang and Kruggel, 2008). Basins
capture local surface properties such as patch size, surface curvature,
geodesic depth, and neighborhood relationships with adjacent basins,
thus, provide a richer representation than just the location information of
sulcal pits. We represented the neocortical surface as a graph of basins
linked by their neighborhood relationships, and analyzed the local
variation of corresponding basin labels across a large subject sample to
characterize cortical regions in terms of their structural variability. Using
a two-level clustering approach, we determined seven groups of “co-
varying” basins, called communities here, that emerge from the data
without injecting anatomical knowledge. We hypothesized that com-
munities form a structural layer between a hemisphere and its basins,
such that communities are similar in all normally developed brains, while
the inter-individual variability is kept within a community.

Methods and materials

In the following, we describe the image data base of the population
sample used in this study, the processing that led to the segmentation of
white matter (WM)/grey matter (GM) interfaces, the basin segmentation
process, and the clustering method from which the definition of basin
communities emerged.

Subjects and imaging data

This work included imaging data of all 897 subjects in the “900
Subjects Release” of the Human Connectome Project released in
December 2015. This sample consists of 503 females and 394 males in
the age range of 20–40 years. Structural MR images were acquired on a
customized Siemens 3T “Connectome Skyra” housed at Washington
University in St. Louis, using a standard 32-channel Siemens receive head

coil and a body transmission coil. T1-weighted data were acquired using
a 3D MPRAGE protocol with parameters TR¼ 2400ms, TE¼ 2.14ms,
TI¼ 1000ms, flip angle 8�, FOV¼ 224 � 224mm, 0.7 mm isotropic
voxel size, 7min 40 s acquisition time. T2-weighted data were acquired
using a 3D T2-space protocol with parameters TR¼ 3200ms,
TE¼ 565ms, FOV¼ 224 � 224mm, 0.7mm isotropic voxel size, 8 min
24 s acquisition time. For detailed information, refer to the release
document (Human Connectome Project, 2017).

Image processing

Our processing started from triangulated meshes representing the
WM/GM interface of the left or right cerebral hemisphere with a topo-
logical genus of zero. Such surfaces can be generated by several available
software packages, and we described our processing chain below.

Unprocessed T1-and T2-weighted structural images were down-
loaded from the HCP database server. Imaging data were converted from
NIFTI to BRIAN format (Kruggel, 2017). Each T1-weighted image was
aligned with the stereotaxic coordinate systems and the corresponding
T2-weighted image rigidly registered with the aligned data set. Both
images were corrected for intensity inhomogeneities (Glasser et al.,
2013). A mask for the intracranial compartment was generated based on
the T1-weighted image using a registration approach (Hentschel and
Kruggel, 2004) and applied to both images. The intracranial space was
classified into four compartments based on a Gaussian mixturemodel (He
et al., 2008), roughly corresponding to WM, GM, cerebro-spinal fluid
(CSF) and connective tissue. The inner cavities of the WM segmentation
(ventricles and basal ganglia) were filled via a patch-based approach
using an atlas of 20 pre-segmented data sets (Coupe et al., 2011). From
the resulting WM segmentation of the brain, the cerebellum and brain
stem were clipped at a level of 15mm below the plane of the anterior and
posterior commissures, and split into hemispheres at the mid-sagittal
plane. In each hemisphere, a multi-seeded region growing process
(Segonne, 2008) was applied to reconstruct the object as a single
c18-connected component (Toriwaki and Yonekura, 2002). A triangu-
lated surface was computed from this object (Nielson, 2003), and opti-
mally adapted to the WM/GM interface as a deformable model using the
intensity-corrected T1-weighted brain image. Meshes retained the indi-
vidual dimensions in which images were acquired (� 1mm vertex dis-
tance), and had a topological genus of zero. Each face represented an area
of about 0.30mm2, each vertex a Voronoi area of about 0.60mm2 (Meyer
et al., 2002).

Basin segmentation

The neocortical surface was segmented into patches using surface
curvature and geodesic depth as local properties. Basins are regions
grown from locally deepest points in convex regions at sulcal bottoms
until they meet in concave regions at gyral crowns. We used a segmen-
tation procedure that was revised from a previous publication (Yang and
Kruggel, 2008).

Principal curvature components κ1; κ2 (Meyer et al., 2002) were
computed at each vertex of the triangulated surface (see Fig. 1, top left)
and converted into the shape index s ¼ 2

π arctan
κ1þκ2
κ1�κ2

, that ranges between
�1 (convex areas) and þ1 (concave areas). For computing the geodesic
depth, we used the hemispheric WM segmentation, filled sulci using a
morphological closing operator, and computed a constrained distance
transform on the difference image (Verbeek et al., 1986). The resulting
depth values were interpolated in voxel space at vertex locations of the
hemisphere mesh (see Fig. 1, top right).

The region growing process was seeded at locally deepest vertices,
and each seed was addressed a unique label. In each iteration, all unla-
beled vertices on the outer boundary of a region were examined, and the
deepest vertex in a convex neighborhood was added to a region. The
growing process ended when all vertices in a convex neighborhood were
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