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ARTICLE INFO ABSTRACT

The macro-connectome elucidates the pathways through which brain regions are structurally connected or
functionally coupled to perform a specific cognitive task. It embodies the notion of representing and
understanding all connections within the brain as a network, while the subdivision of the brain into interacting
functional units is inherent in its architecture. As a result, the definition of network nodes is one of the most
critical steps in connectivity network analysis. Although brain atlases obtained from cytoarchitecture or
anatomy have long been used for this task, connectivity-driven methods have arisen only recently, aiming to
delineate more homogeneous and functionally coherent regions. This study provides a systematic comparison
between anatomical, connectivity-driven and random parcellation methods proposed in the thriving field of
brain parcellation. Using resting-state functional MRI data from the Human Connectome Project and a plethora
of quantitative evaluation techniques investigated in the literature, we evaluate 10 subject-level and 24
groupwise parcellation methods at different resolutions. We assess the accuracy of parcellations from four
different aspects: (1) reproducibility across different acquisitions and groups, (2) fidelity to the underlying
connectivity data, (3) agreement with fMRI task activation, myelin maps, and cytoarchitectural areas, and (4)
network analysis. This extensive evaluation of different parcellations generated at the subject and group level
highlights the strengths and shortcomings of the various methods and aims to provide a guideline for the choice
of parcellation technique and resolution according to the task at hand. The results obtained in this study suggest
that there is no optimal method able to address all the challenges faced in this endeavour simultaneously.
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and their connections to cognitive procedures and brain disorders
(Supekar et al., 2008; Bassett et al., 2008; Smith et al., 2009). This
allows to study the brain and its function from a new perspective that

1. Introduction

Understanding the brain's behaviour and function has been a

prominent and ongoing research subject for over a century (Sporns,
2011). Neuronal interconnections constitute the primary means of
information transmission within the brain and are, therefore, strongly
related to the way the brain functions (Smith et al., 2013). These
connections constitute a complex network that can be estimated at the
macro scale via modern imaging techniques such as Magnetic Resonance
Imaging (MRI) (Craddock et al., 2013). While structural connectivity
networks are typically inferred from diffusion MRI (dMRI), functional
networks can be mapped using resting-state functional MRI (rs-fMRI)
(Honey et al., 2009; Eickhoff et al., 2015). The former allows estimation
of the physical connections, while the latter elucidates putative func-
tional connections between spatially remote brain regions. Analysing
brain connectivity from a network theoretical point of view has shown
significant potential for identifying organisational principles in the brain
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accounts for the complexity of its architecture. One of the critical steps in
the construction of brain connectivity networks is the definition of the
network nodes (Sporns, 2011; Eickhoff et al., 2015). Adopting a vertex-
or voxel-based representation yields networks that are very noisy and of
extremely high dimensionality, making subsequent network analysis
steps often intractable (Thirion et al., 2014). An alternative approach to
node definition is to subdivide the brain into a set of distinct regions - i.e.
parcellate the brain-, where each parcel corresponds to a node of the
connectivity network.

Traditionally, parcellations derived from anatomical landmarks
(e.g. AAL) or cytoarchitectonic information (e.g. Brodmann areas)
have been used to define regions of interest (ROIs) for network analysis
(Sporns, 2011). Whereas such parcellations are of great importance in
order to derive neuro-biologically meaningful brain atlases, they might
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fail to fully reflect the intrinsic organisation of the brain and capture
the functional variability inherent in individual brains, due to brain
maturation or injury. Furthermore, they are typically generated on a
single or small set of individuals, which can make them biased and
unable to accurately represent population variability. This can lead to
ill-defined nodes in the constructed network. For example, it has been
shown that the anterior cingulate cortex (ACC) exhibits a great amount
of heterogeneity in structural (Beckmann et al., 2009) and functional
connectivity (Margulies et al., 2007), despite the fact that it is typically
represented as a single ROI in a standard anatomical brain atlas
(Tzourio-Mazoyer et al., 2002).

Alternatively, random parcellations can be used to define the
network nodes. However, this kind of approach could fail to represent
the underlying connectivity faithfully and lead to loss of information
(Smith et al., 2011). More recent parcellation approaches attempt to
overcome these problems by using connectivity information (e.g. rs-
fMRI or dMRI data) to drive parcellations (Eickhoff et al., 2015). Since
connectivity-based parcellations are directly obtained from the under-
lying data, such methods can potentially provide highly homogeneous
and functionally coherent parcels and separate regions with different
patterns of connectivity more accurately. With this idea in mind,
several connectivity-driven parcellation methods have been proposed,
usually in association with clustering techniques (Thirion et al., 2014).
These methods are based on hierarchical clustering (Mumford et al.,
2010; Bellec et al., 2010; Arslan and Rueckert, 2015; Moreno-
Dominguez et al, 2014), k-means (and its fuzzy counterpart)
(Tomassini et al., 2007; Mezer et al., 2009; Golland et al., 2008),
Gaussian mixture models (Yeo et al., 2011; Lashkari et al., 2010),
spectral graph theory (van den Heuvel et al., 2008; Craddock et al.,
2012; Arslan et al., 2015; Parisot et al., 2016a; Shen et al., 2013; Arslan
et al, 2016), Markov random fields (MRF) (Ryali et al, 2013;
Honnorat et al., 2015; Parisot et al., 2016b), edge detection (Cohen
et al., 2008; Laumann et al., 2015; Gordon et al., 2016), region growing
(Blumensath et al., 2013; Bellec et al., 2006), independent component
analysis (ICA) (Beckmann and Smith, 2004; Smith et al., 2009),
Bayesian modelling (Baldassano et al., 2015), meta-analytic connectiv-
ity techniques (Eickhoff et al., 2011; Power et al., 2011), dictionary
learning (Varoquaux et al., 2011), and many more as extensively
reviewed in (Eickhoff et al., 2015; Thirion et al., 2014; de Reus and
van den Heuvel, 2013). Although these methods have been thoroughly
validated against alternative approaches, a different experimental setup
with varying assumptions was used in each case. In addition, the
absence of ground truth makes the evaluation of different parcellation
methods even more challenging as there is no universally-accepted
parcellation that can be used as reference.

In this paper, we propose a systematic comparison of existing
parcellation methods using publicly available resources and evaluation
measures that are widely used in the literature through a structured
experimental pipeline. We focus on resting-state fMRI (rs-fMRI), as
the majority of connectivity-driven parcellation methods we are
investigating have been developed and tested using this modality. We
aim to provide some insight into the reliability of parcellations in terms
of reflecting the underlying mechanisms of cognitive function, as well
as, revealing their potential impact on network analysis. Thirion et al.
(2014) did a similar study at a lower scale, focusing on the analysis of
three clustering techniques for fMRI-based brain parcellation, but it
only approaches the problem from a clustering point of view. Our
study, however, provides a large-scale systematic comparison of the
state-of-the-art parcellation methods that encompasses many different
aspects in a unified experimental setting.

The main contributions of our study are the following: (1) We
evaluate 10 subject-level and 24 groupwise methods using publicly
available datasets provided by the Human Connectome Project (Van
Essen et al., 2013b). (2) Our experiments consist of quantitative
assessments of parcellations at both subject and group levels and for
different resolutions. (3) We evaluate parcellations not only from a data
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clustering point of view but also with regards to network analysis and
multi-modal consistency. Our evaluation includes reproducibility (e.g.
Dice coefficient and adjusted Rand index), cluster validity analysis (e.g.
Silhouette coefficient and parcel homogeneity) and multi-modal com-
parisons with task fMRI activation, myelin and cytoarchitectural maps.
In addition, we compute network statistics with respect to the under-
lying parcellation and devise simple network-based tasks (such as
gender classification) to evaluate the potential impact of parcellations
on network analysis at different scales. It should be noted that our aim
is not to directly compare single subject parcellations to group-level
ones as groupwise parcellations are subject to methodological biases
(e.g. registration) which can affect their performance.

The remainder of this paper is organised as follows: Section 2
summarises the procedures pursued during the generation and evalua-
tion of parcellations. Experimental results are presented in Section 3.
In Section 4, we discuss the reliability and applicability of parcellations
for network analysis and summarise the impact of this study with some
insight into the future of brain parcellation.

2. Materials and methods

A summary of the processing pipelines is given in Fig. 1. A brief
description of subject- and group-level methods is provided in Tables 1
and 2-3, respectively. We provide further algorithmic/implementation
details for each method in Supplementary Material 1.

2.1. Data

This study is carried out using data from the publicly available
Human Connectome Project (HCP) database (Van Essen et al., 2013b),
S900 release. All connectivity-driven parcellations are derived from the
rs-fMRI acquisitions of 100 unrelated subjects (54 female, 46 male
adults, aged 22-35). This dataset is publicly available as the “Unrelated
100” in the HCP database and is referred to as “Dataset 1” in the
remainder of this paper. For evaluation purposes, we gather a different
set of 100 unrelated subjects from the HCP database (Dataset 2)
comprising randomly selected 50 male and 50 female adults of age 22-
35. The evaluation is performed on Dataset 2 so as to reduce the
possible bias towards parcellations computed from Dataset 1 with
respect to the provided ones. All subjects had their scans successfully
completed for all imaging modalities covered by the HCP.

We use rs-fMRI as our primary data modality for the generation
and evaluation of parcellations. This is because most methods selected
for this study were developed for rs-fMRI driven parcellation, and rs-
fMRI allows test-retest measurements across acquisitions, subjects,
and groups. The rs-fMRI scans for each subject were conducted in two
sessions, consisting of a total of four runs of approximately 15 minutes
each. The sessions were held on different days and during the scans the
subjects were presented a fixation cross-hair, projected against a dark
background, which prevented them from falling asleep. All subjects
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Fig. 1. Visual outline of parcellation generation steps for the subject- and group-level
parcellations.
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