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A B S T R A C T

Current theories hold that brain function is highly related to long-range physical connections through axonal
bundles, namely extrinsic connectivity. However, obtaining a groupwise cortical parcellation based on extrinsic
connectivity remains challenging. Current parcellation methods are computationally expensive; need tuning of
several parameters or rely on ad-hoc constraints. Furthermore, none of these methods present a model for the
cortical extrinsic connectivity of the cortex. To tackle these problems, we propose a parsimonious model for the
extrinsic connectivity and an efficient parceling technique based on clustering of tractograms. Our technique
allows the creation of single subject and groupwise parcellations of the whole cortex. The parcellations obtained
with our technique are in agreement with structural and functional parcellations in the literature. In particular,
the motor and sensory cortex are subdivided in agreement with the human homunculus of Penfield. We
illustrate this by comparing our resulting parcels with the motor strip mapping included in the Human
Connectome Project data.

1. Introduction

The human brain is arranged in areas based on criteria such as
cytoarchitecture, functional specialization or axonal connectivity
(Brodmann, 1909; Thirion et al., 2014; Thiebaut de Schotten
et al., 2016). Parceling the cortex into such areas and characterizing
their interaction is key to understanding how the brain works.
Nowadays it is accepted that axonal connectivity plays a fundamen-
tal role in the interaction between brain regions (Schmahmann and
Pandya, 2006). Moreover, current theories hold that long-range
physical connections trough axonal bundles, namely extrinsic con-
nectivity, are strongly related to brain function, for example, this has
been shown in macaques (Passingham et al., 2002). Therefore,
understanding how the cortex is arranged based on its extrinsic
connectivity can provide key information in unraveling the internal
organization of the brain.

Diffusion MRI (dMRI) enables the in vivo exploration of extrinsic
connectivity and other aspects of white matter anatomy on the brain.
However, in using diffusion MRI to infer long-distance connectivity,
several challenges arise. A primary issue is the spatial resolution of
diffusion imaging: it is several orders of magnitude coarser than axonal
diameters (millimeters vs. micrometers) (Van Essen et al., 2014),
making hard to infer some brain pathways. In addition, there is as

yet no quantitative measure of the strength of connections from
diffusion (Jbabdi and Behrens, 2013). Given these general limitations,
obtaining a cortical parcellation based on extrinsic connectivity re-
mains challenging (Van Essen et al., 2014; Jbabdi and Behrens, 2013).
Moreover, most current parceling techniques compute either single-
subject or groupwise parcellations. Single-subject techniques work by
refining other parcellations (Clarkson et al., 2010), which introduces a
bias in the resulting parcellation; parceling only part of the cortex
(Lefranc et al., 2016; Roca et al., 2009; Thiebaut de Schotten et al.,
2014, 2016) or using ad-hoc metrics to compare extrinsic connectivity
(Moreno-Dominguez et al., 2014). Meanwhile, existing groupwise
methods rely on average connectivity profiles (Clarkson et al., 2010;
Roca et al., 2010), which prevents obtaining single subject parcella-
tions; seek a matching across subjects after independent parcellations
(Moreno-Dominguez et al., 2014), relying on possible noisy results, or
need fine tuning of parameters, as the expected number of clusters to
find (Parisot et al., 2015).

In this work, we present a parsimonious model for the cortical
connectivity alongside an efficient parceling technique based on it. We
summarize both contributions in Fig. 1. Our model assumes that the
cortex is divided in patches of homogeneous extrinsic connectivity.
That is, nearby neurons in the cortex share approximately the same
long-range physical connections, we call this the local coherence
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criterion. Our assumption is based on histological results in the
macaque brain (Schmahmann and Pandya, 2006). Inspired by statis-
tical models for clustered data (Pendergast et al., 1996), our model
accounts for the variability in the axonal connections of neurons within
a patch and for variability in patch boundaries across subjects. Our
parceling technique allows us to create single subject and groupwise
parcellations of the whole cortex in agreement with extant parcella-
tions.

We validate our technique by taking advantage of data available
from the Human Connectome Project (HCP). Using our technique, we
compute single subject and a groupwise parcellations. In this work we
will focus on the groupwise case. For results of our method on the
single-subject case please refer to Gallardo et al. (In press). Here, we
first assess the consistency of our groupwise parceling technique by
comparing the groupwise parcellations of three disjoint groups of 46
subjects from the HCP. We also show that our technique computes a
similar parcellation to the one obtained by Thiebaut de Schotten et al.
(2016) when parceling only the frontal cortex. Later, to test the
functional specialization of our frontal lobe parcels, we use a data-
base of meta-analysis of fMRI studies (Yarkoni et al., 2011), as in
Thiebaut de Schotten et al. (2016). After, we show that our groupwise
parcels subdivide some well-known anatomical structures by compar-
ing our results against Desikan's atlas (Desikan et al., 2006). Also, we
show the functional specialization of some of our parcels by comparing
against results from Glasser et al. (2013). Finally, we compare our
groupwise parcellation of 138 subjects against the multi-modal parcel-
lation of Glasser et al. (2016). We show that, while the parcellations
boundaries differ, our parcels show similar or better functional
specialization, specially for motor related tasks.

This work is organized as follows: In the Section 2 we present our
model for cortical connectivity and frame tractography within our
model. Also, we present both our single-subject and groupwise case
methodologies to parcellate the cortex. In the Section 3 we present our
results on HCP data. We then discuss our results and position ourselves
with respect to the state of the art in the Section 4. Finally, in the last
section we provide our conclusions.

2. Methods

2.1. Cortical connectivity model and tractography

Our model assumes that the cortex is divided in clusters of
homogeneous extrinsic connectivity. That is, nearby neurons in the
cortex share approximately the same long-ranged physical connections,
we call this the local coherence criterion. Our assumption is based on
histological results in the macaque brain (Schmahmann and Pandya,
2006). As in clustered data models in statistics (Pendergast et al.,
1996), we allow intra-cluster and across-subject variability in the
connectivity. We formalize this concept as:
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where the set of points on the cortex K is the disjoint union of each
cluster Ki and conn(·) is the extrinsic connectivity fingerprint of a
cluster. We will make the notion of variability explicit in Eq. (3). In this
work, the connectivity fingerprint of a seed-point in the brain is a
binary vector denoting to which other seed-points it is connected
through axonal bundles. That is, the physical connections of a point
p K∈ i in the brain are represented by its connectivity fingerprint

p Kconn( ) = conn( )i .
Currently, the most common tool for estimating the extrinsic

connectivity fingerprint of a point in vivo is probabilistic tractography
(Jbabdi and Behrens, 2013). Given a seed-point in the brain, prob-
abilistic tractography creates a tractogram: an image where each voxel
is valued with its probability of being connected to the seed through
axonal bundles. One way of calculating these probabilities is with a
Monte Carlo procedure, simulating the random walk of water particles
through the white matter (Behrens et al., 2003). Each one of these
paths is known as a streamline. If we model these streamlines as
Bernoulli trials, where we get a value for the connection from our seed
with other points (1 if they connected by the streamline, 0 if not)
(Behrens et al., 2003), then, we can model the tractogram of the subject
s in the seed-point p as:

Fig. 1. Lower left corner: graphical model of the linear relationship between the tractogram of a subject s for a seed p (T∼sp); and the intra-cluster (ϵ∼c) and across-subject (ϵ∼s) variability of

the seed's patch. We transform the tractograms into a Euclidean space while explicitly accounting for the variability. This allows us to use well known clustering techniques and compress
different levels of granularities for a same parcellation in a dendrogram.

G. Gallardo et al. NeuroImage xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/8687143

Download Persian Version:

https://daneshyari.com/article/8687143

Daneshyari.com

https://daneshyari.com/en/article/8687143
https://daneshyari.com/article/8687143
https://daneshyari.com

