Neurolmage 169 (2018) 240-255

Contents lists available at ScienceDirect

Neurolmage

Neurolmage

journal homepage: www.elsevier.com/locate/neuroimage

3D spatially-adaptive canonical correlation analysis: Local and
global methods

Check for
updates

Zhengshi Yang®, Xiaowei Zhuang®, Karthik Sreenivasan “, Virendra Mishra“, Tim Curran b,
Richard Byrd ¢, Rajesh Nandy d, Dietmar Cordes ®""

# Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA

® Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
¢ Department of Computer Science, University of Colorado, Boulder, CO 80309, USA

4 School of Public Health, University of North Texas, Fort Worth, TX 76107, USA

ARTICLE INFO ABSTRACT

Local spatially-adaptive canonical correlation analysis (local CCA) with spatial constraints has been introduced to
fMRI multivariate analysis for improved modeling of activation patterns. However, current algorithms require
complicated spatial constraints that have only been applied to 2D local neighborhoods because the computational
time would be exponentially increased if the same method is applied to 3D spatial neighborhoods.

In this study, an efficient and accurate line search sequential quadratic programming (SQP) algorithm has been
developed to efficiently solve the 3D local CCA problem with spatial constraints. In addition, a spatially-adaptive
kernel CCA (KCCA) method is proposed to increase accuracy of fMRI activation maps. With oriented 3D spatial
filters anisotropic shapes can be estimated during the KCCA analysis of fMRI time courses. These filters are
orientation-adaptive leading to rotational invariance to better match arbitrary oriented fMRI activation patterns,
resulting in improved sensitivity of activation detection while significantly reducing spatial blurring artifacts. The
kernel method in its basic form does not require any spatial constraints and analyzes the whole-brain fMRI time
series to construct an activation map. Finally, we have developed a penalized kernel CCA model that involves
spatial low-pass filter constraints to increase the specificity of the method.

The kernel CCA methods are compared with the standard univariate method and with two different local CCA
methods that were solved by the SQP algorithm. Results show that SQP is the most efficient algorithm to solve the
local constrained CCA problem, and the proposed kernel CCA methods outperformed univariate and local CCA
methods in detecting activations for both simulated and real fMRI episodic memory data.
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anisotropic basis functions with unknown weight coefficients (Cordes
et al., 2012; Friman et al., 2001, 2003). These basis functions act as low-

Introduction

Spatially-adaptive multivariate methods have been used for fMRI
data analysis as an alternative to the most commonly used single voxel
analysis with isotropic Gaussian smoothing (SV) (Almododvar-Rivera and
Maitra, 2017; Borga and Rydell, 2007; Cordes et al., 2012; Friman et al.,
2001; Harrison et al., 2008; Luessi et al., 2011; Tabelow et al., 2006;
Weeda et al., 2009; Yue et al., 2010; Zhuang et al., 2017). While Gaussian
smoothing can improve the signal-to-noise ratio (SNR) of fMRI data
(Kriegeskorte and Bandettini, 2007), it also introduces spatial blurring of
activation patterns leading to poor specificity.

One such spatially adaptive method is local canonical correlation
analysis (local CCA), where fMRI time series are convolved with spatially

pass spatial filters to better match arbitrary activation patterns. CCA
(Hotelling, 1936) is then applied to determine the optimal weight co-
efficients of the spatial basis functions contingent on the design matrix
that specifies the temporal regressors. Because CCA has more degrees of
freedom than a univariate analysis that contains only one filter function
(i.e. a spatial Gaussian function), spatial constraints on the weight co-
efficients are required to improve specificity of activation detection.
Friman et al. (2003) used 2D spatially oriented steerable filters (Kass
and Witkin, 1988; Knutsson et al., 1983) as spatial basis functions for
local CCA and restricted the weights of the basis functions to be
nonnegative, so that the spatial filter acts as an adaptive spatial low-pass
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filter on the data. Cordes et al. (2012) showed how different spatial
constraints impact the sensitivity and specificity of local CCA using time
series convolved with 9 spatial 2D Dirac delta functions (2D-6 functions)
on 3 x 3 in-plane neighboring voxels. Three different spatial constraints
were investigated, namely a nonnegative constraint (the weights of all
spatial basis functions are nonnegative), a so-called dominant constraint
(the weight of the spatial basis functions acting on the center voxel is
greater than the weights of all other spatial basis functions acting on
neighboring voxels) and a so-called sum constraint (the weight of the
spatial basis functions acting on the center voxel is greater than the sum of
weights of all other spatial basis functions acting on neighboring voxels).
The technique used to solve the constrained CCA problem is called
restricted CCA (Das and Sen, 1994) and works by repeatedly excluding
one or more unknown coefficients from the CCA equation until a solution
satisfying all spatial constraints is found. Consequently, the computa-
tional time exponentially increases with the number of unknown vari-
ables. Recently, Zhuang et al. (2017) generalized these three spatial
constrained models and implemented a family of constraints model
controlled by two parameters, which includes previous constrained
models as specific cases. Local CCA with the family of constraints was
solved by nonlinear optimization algorithms such as the Broyden--
Fletcher-Goldfarb-Shanno (BFGS) algorithm, the Generalized Reduced
Gradient method (GRG) and the Augmented Lagrangian (AL) method. It
was shown that GRG is the most time-efficient method and BFGS is the
most accurate method among these three algorithms.

The first unsolved problem in local CCA of fMRI data is how to
analyze data when 3D spatial filter functions (such as 3D-6 functions) are
specified for local neighborhoods in 3D (such as cubic neighborhoods
containing 3 x 3 x 3 voxels). Current local CCA methods are exclusively
focused on analyzing 2D in-plane (same slice) neighborhoods which
create activation maps that may depend on the direction of the slice
acquisition. A justification for only analyzing 2D neighborhoods is that
the in-plane (within a slice) resolution of fMRI data is usually higher than
the out-of-plane (between slices) resolution to limit the number of slices
required for full brain coverage at an acceptable scanning time. For data
with isotropic voxel sizes, 3D local CCA methods are more appropriate
because neighbors from all directions of a given center voxel are equally
relevant to the center voxel and accurate brain maps can be produced
independently of the direction of slice acquisition. However, existing
algorithms, e.g. BFGS, for local constrained CCA with 2D spatial con-
straints cannot be extended to the 3D case because the number of variable
partitionings is exponentially increased going from 2D to 3D and the 3D
CCA problems become intractable. To solve local CCA with 3D spatial
constraints, a fundamentally-different optimization algorithm is
required.

The second unsolved problem in local CCA (whether with 2D or 3D
spatial constraints) is how to correctly specify the functional form of the
spatial constraints. A spatial constraint that is too strict will lower
sensitivity of activation detection and leads to less correctly identified
active voxels whereas a constraint that is too loose (as in conventional
unconstrained CCA) will lower the specificity of detection and give a
smaller proportion of correctly identified inactive voxels. In principle, the
spatial constraint together with the spatial filter functions should better
fit fMRI activation patterns.

The kernel variant of the CCA method is an attractive method in terms
of computational efficiency, since this method analyzes whole-brain
fMRI data simultaneously. This global method has been introduced in
fMRI data analysis (Blaschko et al., 2011; Hardoon et al., 2007; Mur-
ayama et al., 2010; Biefmann et al., 2009). Hardoon et al. (2007) applied
KCCA as an unsupervised machine learning algorithm on task fMRI data
with pleasant and unpleasant visual stimuli. Blaschko et al. (2011)
implemented supervised and semi-supervised KCCA on video-task fMRI
data and obtained brain spatial weight maps corresponding to different
types of visual processing. Murayama et al. (2010) and Biefmann et al.
(2009) associated neural signals with time-delayed fMRI signals.

However, current methods involving KCCA are limited in their
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application to fMRI data. The first deficiency is that KCCA is restricted to
a simple contrast design and can obtain only activation maps equivalent
to a one-sample t-test. KCCA has not been formulated for a more general
contrast design specified by a contrast matrix. Unlike KCCA, any local
CCA and standard general linear model analysis of fMRI data can be
carried out for any arbitrary contrast matrix of interest to determine
contrast-specific statistical activation maps. A second deficiency is that
the data in current KCCA methods are spatially smoothed by an isotropic
Gaussian filter with a fixed full-width at-half-maximum (FWHM) in a
preprocessing step. Thus KCCA, in its current form, does not adaptively
fit activation patterns.

In this study, our main goal is twofold: First, we developed a 3D local
constrained CCA method and solved it with a sequential quadratic pro-
gramming method (SQP) (Nocedal and Wright, 2006). Second, we pro-
posed a global spatially-adaptive KCCA method, called steerable filter
KCCA (sf-KCCA), and developed a penalized sf-KCCA model (sf-pKCCA).
These two KCCA methods can handle any general linear contrast of in-
terests defined by an arbitrary contrast matrix to compute t- and F-sta-
tistical maps of the task design.

To test the time efficiency and accuracy of the SQP algorithm, we
compared SQP with BFGS and the GRG algorithms for local CCA with 2D
and 3D constraints. To evaluate the performance of the sf-KCCA method,
we used nonnegative constrained CCA with the same steerable filters (sf-
nonnegCCA). Along with the standard SV method, the best constrained
CCA model in Cordes et al. (2012), namely the sum constraint CCA
(sumCCA) with spatial § functions as filters was used in addition. As
sf-KCCA uses 3D neighboring information for analysis, the sf-nonnegCCA
and sumCCA methods were also applied with 3D local neighboring in-
formation and solved using the SQP algorithm. We evaluated the per-
formance of these methods with simulated data using receiver operating
characteristic (ROC) curves. The same analysis methods were applied on
real fMRI episodic memory data where single-domain amnestic mild
cognitive impairment (aMCI) subjects and normal controls (NCs) per-
formed a visual memory task. We also estimated ROC curves for real fMRI
data (Nandy and Cordes, 2003a,b; Nandy and Cordes, 2004) to evaluate
the performance of the different methods. We computed activation maps
and applied a radial basis function network (RBFN) technique and sup-
port vector machine (SVM) method to classify the population of subjects.
The computed prediction accuracies provide a realistic assessment of the
performance for the different analysis methods in classification and
prediction of a neurodegenerative disorder.

Method
Spatial modeling and CCA

Classical univariate methods for analyzing fMRI data rely on isotropic
data smoothing using a fixed Gaussian spatial low-pass filter. This type of
smoothing is optimal for detecting activation patterns only if the spatial
filter function matches the size and shape of the activated voxels. This is,
however, not the case for fMRI data because shapes of active brain re-
gions vary considerably depending on the task performed (Friman et al.,
2003). Furthermore, a fixed spatial filter will lead to blurring of gray
matter activation patterns into white matter regions.

For episodic memory tasks, it is known that important activation
patterns of the medial temporal lobes covering the hippocampus and
adjacent regions have a small contrast-to-noise ratio. If the spatial filter is
non-adaptive it is less likely to obtain optimal activation detection using
classical univariate methods (Nandy and Cordes, 2003a,b). It was shown
that the use of adaptive spatial basis functions in the framework of
multivariate CCA can lead to an increased sensitivity for a given speci-
ficity to detect episodic memory activations (Cordes et al., 2012). In
general, using adaptive spatial basis functions in a multivariate analysis
may improve activation detection not only for episodic task data but also
may improve activation detection for arbitrary fMRI data as well.

The conventional general linear model (GLM) uses a single spatial
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