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A B S T R A C T

Previous attempts at characterizing the spatial specificity of the blood oxygenation level dependent functional
MRI (BOLD fMRI) response by estimating its point-spread function (PSF) have conventionally relied on reti-
notopic spatial representations of visual stimuli in area V1. Consequently, their estimates were confounded by the
width and scatter of receptive fields of V1 neurons. Here, we circumvent these limits by instead using the inherent
cortical spatial organization of ocular dominance columns (ODCs) to determine the PSF for both Gradient Echo
(GE) and Spin Echo (SE) BOLD imaging at 7 Tesla.

By applying Markov chain Monte Carlo sampling on a probabilistic generative model of imaging ODCs, we
quantified the PSFs that best predict the spatial structure and magnitude of differential ODCs' responses. Prior
distributions for the ODC model parameters were determined by analyzing published data of cytochrome oxidase
patterns from post-mortem histology of human V1 and of neurophysiological ocular dominance indices. The
average PSF full-widths at half-maximum obtained from differential ODCs’ responses following the removal of
voxels influenced by contributions from macroscopic blood vessels were 0.86 mm (SE) and 0.99 mm (GE). Our
results provide a quantitative basis for the spatial specificity of BOLD fMRI at ultra-high fields, which can be used
for planning and interpretation of high-resolution differential fMRI of fine-scale cortical organizations.

1. Introduction

Functional magnetic resonance imaging (fMRI) of the human brain is
increasingly being used to investigate fine-scale structures such as
cortical columns (Cheng et al., 2001; De Martino et al., 2015; Goncalves
et al., 2015; Goodyear and Menon, 2001; Menon et al., 1997; Nasr et al.,
2016; Shmuel et al., 2010; Tootell and Nasr, 2017; Yacoub et al., 2008,
2007; Zimmermann et al., 2011). To optimally plan high-resolution fMRI
studies and to correctly interpret their results it is necessary to know the
inherent limits of the fMRI spatial specificity relative to the sites where
changes in neuronal activity occur.

The most commonly used fMRI approach relies on gradient echo (GE)
blood oxygenation level dependent (BOLD) contrast (Bandettini et al.,
1992; Kwong et al., 1992; Ogawa et al., 1990, 1992). GE BOLD is sen-
sitive to the intra- and extravascular effects of activation-induced
changes in the deoxy-hemoglobin content of blood. At standard mag-
netic field strengths (1.5 T, 3 T) the signal is dominated by contributions
from large blood vessels. At higher magnetic field strengths, the strong

intravascular component of these large blood vessels decreases, while the
extravascular signal changes around capillaries and smaller vessels in-
crease (Uluda�g et al., 2009; Yacoub et al., 2001). Additional weighting
towards the microvasculature can be achieved by using spin echo (SE)
BOLD imaging, which suppresses extravascular signal contributions from
large blood vessels (Uluda�g et al., 2009; Yacoub et al., 2003).

The first study to quantify the spatial specificity of the BOLD response
(Engel et al., 1997) used an elegant phase-encoding paradigm that
induced traveling waves of retinotopic neural activity in the primary
visual cortex (V1). Assuming a shift-invariant linear response, Engel et al.
(1997) estimated the point-spread function (PSF), which represents the
spatial response that would be elicited by a small point stimulus. They
found the full-width at half-maximum (FWHM) of the GE BOLD PSF to be
3.5 mm at 1.5 T. Similar values (3.9 mm for GE BOLD and 3.4 mm for SE
BOLD) have been reported at 3 T (Parkes et al., 2005) using a paradigm
similar to that used in Engel et al. (1997). To estimate the GE BOLD PSF
at 7 T, we previously measured the spatiotemporal spread of the fMRI
response in gray matter regions around the V1 representation of edges of
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visual stimuli (Shmuel et al., 2007). To reduce contributions from
macroscopic veins, we excluded voxels that showed vessel-like response
features. The mean measured and estimated FWHMs were
2.34 ± 0.20 mm and <2 mm, respectively. The spatial specificity of SE
BOLD fMRI at ultra-high magnetic fields has not yet been quantified.

All previous attempts at characterizing the spatial specificity of the
BOLD fMRI response (Engel et al., 1997; Parkes et al., 2005; Shmuel
et al., 2007) relied on an implicit assumption that neuronal responses to
small visual stimuli are point-like. However, to estimate the spatial
specificity of the BOLD response, these studies have conventionally relied
on spatial representations of visual stimuli in area V1. Unlike the implicit
assumption of point-like responses, the receptive fields of neurons in V1
have non-zero spatial extents (Hubel and Wiesel, 1968). In addition,
electrode measurements in macaque V1, oriented orthogonally relative
to the surface of cortex have demonstrated substantial scatter in the
center of receptive fields (Hubel and Wiesel, 1974). Therefore, the
pattern of neural activity parallel to the cortical surface is a blurred
representation of the visual stimulus. This implies that receptive field size
and scatter pose a lower limit on any BOLD fMRI PSF width that is
estimated using spatial representations of visual stimuli in V1. Conse-
quently, the previously computed estimates of the spatial specificity of
the fMRI response were confounded by the width and scatter of receptive
fields of V1 neurons. Such estimates are limited in that they solely
measure the capacity of the BOLD response to resolve retinotopic rep-
resentations; they do not measure its ability to resolve more fine-grained
neuronal activity. Yet only this latter resolvability matters for functional
imaging at the spatial scale of cortical columns.

Here, we estimate and compare the PSF widths of GE and SE BOLD
imaging at 7 T using a novel approach. We circumvent the limits posed by
the retinotopic representation of visual stimuli by instead using the
inherent cortical spatial organization of ocular dominance columns
(ODCs). To this end, we fit a model of ODCs imaging (Chaimow et al.,
2011) to ODCs’ responses acquired at 7 T (Yacoub et al., 2007) following
the removal of voxels influenced by contributions from macroscopic

blood vessels. The model's spatial BOLD response is modeled as a
convolution of the neuronal response with a Gaussian PSF. We quantify
the width of the PSF that best predicts the spatial structure and magni-
tude of differential ODC fMRI responses. Since we do not have access to
the underlying anatomical ODC patterns and neurophysiological re-
sponses, we use a probabilistic modeling approach. We constrain the
model ODC parameters by estimating features of real ODC patterns taken
from post-mortem cytochrome oxidase (CO) maps of human ODCs
(Adams et al., 2007) and neurophysiological response distributions in
primates (Berens et al., 2008; Hubel and Wiesel, 1968). We then fit our
model by Markov chain Monte Carlo (MCMC) sampling. Our results
provide a quantitative basis for the spatial specificity of differential BOLD
fMRI at ultra-high fields.

2. Theory: using a probabilistic model of imaging ODCs to
estimate the BOLD PSF from real data

2.1. Model of imaging ODCs

In the current study, we build on a model of imaging ODCs, which we
developed previously (2011). The first component of the model, i.e. the
modeling of realistic neuronal ODCs (Fig. 1, top part of the Model box)
followed (Rojer and Schwartz, 1990). It consists of band-pass filtering a
random instantiation of a two-dimensional Gaussian white noise array.
The filtering is followed by applying a sigmoidal point-wise non-line-
arity, which controls the smoothness of transitions between left and right
eye preference regions. The statistical properties of the ODCs pattern (i.e.
column spacing, regularity, branchiness and sharpness of transitions) are
determined by parameters of the filter and the subsequent non-linearity
(all parameters of the model as used in our current study are listed
in Table 1).

In the next stage (Fig. 1, bottom part of the Model box), we modeled
the spatial BOLD response as a convolution of the neuronal ODCs pattern
with a Gaussian PSF, parameterized using its FWHM:

Fig. 1. Overview of Markov chain Monte Carlo fitting. The model was fitted to the fMRI data using Markov chain Monte Carlo (MCMC) sampling. For an arbitrary given set of pa-
rameters, the model generated a differential fMRI map (left). This map was compared to the measured fMRI map (right) and the likelihood of parameters given the data was calculated. The
MCMC algorithm uses this likelihood together with parameter priors to further traverse the parameter space. After sufficiently many iterations the resulting parameter samples are
distributed according to their joint posterior probability distribution.
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