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A B S T R A C T

For many years, researchers have sought to understand whether and when stroke survivors with acquired lan-
guage impairment (aphasia) will recover. There is broad agreement that lesion location information should play
some role in these predictions, but still no consensus on the best or right way to encode that information. Here,
we address the emerging emphasis on the structural connectome in this work – specifically the claim that
disrupted white matter connectivity conveys important, unique prognostic information for stroke survivors with
aphasia.

Our sample included 818 stroke patients extracted from the PLORAS database, which associates structural
MRI from stroke patients with language assessment scores from the Comprehensive Aphasia Test (CAT) and basic
demographic. Patients were excluded when their lesions were too diffuse or small (< 1 cm3) to be detected by
the Automatic Lesion Identification toolbox, which we used to encode patients' lesions as binary lesion images in
standard space. Lesions were encoded using the 116 regions defined by the Automatic Anatomical Labelling
atlas. We examined prognostic models driven by both “lesion load” in these regions (i.e. the proportion of each
region destroyed by each patient's lesion), and by the disconnection of the white matter connections between
them which was calculated via the Network Modification toolbox. Using these data, we build a series of prog-
nostic models to predict first one (“naming”), and then all of the language scores defined by the CAT.

We found no consistent evidence that connectivity disruption data in these models improved our ability to
predict any language score. This may be because the connectivity disruption variables are strongly correlated
with the lesion load variables: correlations which we measure both between pairs of variables in their original
form, and between principal components of both datasets. Our conclusion is that, while both types of structural
brain data do convey useful, prognostic information in this domain, they also appear to convey largely the same
variance. We conclude that connectivity disruption variables do not help us to predict patients' language skills
more accurately than lesion location (load) data alone.

1. Introduction

For many years, researchers have tried to understand and predict
whether and when stroke survivors will recover lost speech and lan-
guage abilities (Bang et al., 2005; Cloutman et al., 2009; Crinion and
Price, 2005; Hope et al., 2017; Hope et al., 2013; Konig et al., 2008;
Lazar et al., 2008; Lendrem and Lincoln, 1985; Marshall and Phillips,
1983; Payabvash et al., 2010; Pedersen et al., 1995; Seghier et al., 2016;
Tilling et al., 2001; Ween et al., 2000). There is broad agreement that
lesion location information should play some role in this work
(Plowman et al., 2012), but still no consensus on the best or right way
to encode that information (Forkel et al., 2014; Hope et al., 2013; Mah

et al., 2014; Price et al., 2017; Zhang et al., 2014). An emerging em-
phasis on structural (i.e. white matter) connectivity in studies of lan-
guage has naturally encouraged the same attention in studies of aphasia
(Agosta et al., 2010; Epelbaum et al., 2008; Fridriksson et al., 2013;
Hope et al., 2016; Olsen et al., 2015; Ripamonti et al., 2014). As many
studies have shown that disrupted connectivity contributes to language
impairments and their recovery (Forkel et al., 2014; Hope et al., 2016;
Kuceyeski et al., 2015a; Pani et al., 2016; Wu et al., 2015; Yourganov
et al., 2016), it is natural to presume that connectivity disruption data
should be pivotal when predicting language outcomes after stroke.

However, lesion distributions are highly structured (Inoue et al.,
2014; Mah et al., 2014). If one brain region is damaged, neighbouring
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regions are often damaged too, and white matter disruption will tend to
be highly correlated with cortical damage. So even if connectivity
disruption is the causal mechanism for some post-stroke cognitive
symptoms, it may be that lesion location can serve as a reliable proxy in
prognostic models. We might find that the addition of connectivity
disruption data adds little, unique prognostic value to our models of
post-stroke outcomes. Or to put the point another way, mechanistic
importance is no guarantee of clinical importance, in this domain. In
what follows, we test the clinical importance of connectivity disruption
data in a very large sample stroke patients.

2. Methods

2.1. Patient data

Our patient data were extracted from our PLORAS database (Seghier
et al., 2016), which associates stroke patients, tested over a broad range
of times post stroke, with demographic data, behavioural test scores
from the Comprehensive Aphasia Test (Swinburn et al., 2004), and high
resolution T1-weighted MRI brain scans. Patients are excluded from the
PLORAS database when there is evidence they have other neurological
conditions (e.g. dementia, multiple sclerosis), contraindications to MRI
scanning, are unable to see or hear the stimuli required to assess their
language abilities, or have insufficient comprehension of the purpose of
the study to provide consent for their participation. We included all
patients whose data was available at the time, irrespective of their: age
at stroke onset; sex; premorbid handedness; or native language. Patients
were only excluded if their lesions were too diffuse or small (< 1cm3)
to be detected by our Automatic Lesion Identification (ALI) toolbox
(Seghier et al., 2008).

2.2. Structural brain imaging data

Imaging data were collected using sequences described elsewhere
(Hope et al., 2015). Data from different scanners were combined after
conversion to quantitative probabilistic estimates of grey matter den-
sity. Pre-processed with Statistical Parametric Mapping software (SPM,
2012), these images were spatially normalised into Montreal Neurolo-
gical Institute (MNI) space using a modified version of the unified
segmentation algorithm (Ashburner and Friston, 2005) that has been
optimized for use in patients with focal brain lesions (Seghier et al.,
2008). We used the ALI toolbox (Seghier et al., 2008) to index the
degree of abnormality at each voxel in each patient image (in relation
to the same type of images in healthy controls), combining the grey and
white matter outputs to generate a single thresholded (i.e. binary)
image that shows the presence or absence of a lesion at each voxel.
Lesion volume is calculated as the sum of those voxels where lesions
were deemed to be present.

Following the approach taken by Yourganov and colleagues
(Yourganov et al., 2016), in a recent study which demonstrates that
connectivity disruption data can drive useful predictions for language
outcomes after stroke, we encoded our lesion images using the 116
grey-matter regions defined by the Automatic Anatomical Labelling
atlas (Tzourio-Mazoyer et al., 2002a). We examined models driven by
both lesion load in these regions (i.e. the proportion of each region
destroyed by each patient's lesion), and by the disconnection of the
white matter connections between them. Disconnection was calculated
via the Network Modification toolbox (Kuceyeski et al., 2013), which
generates the mean disconnection implied by each lesion, using struc-
tural connectomes defined for a separate sample of 73 neurologically
normal controls. This toolbox has been used to successfully predict both
network atrophy (Kuceyeski et al., 2014) and cognitive outcomes
(Kuceyeski et al., 2016) after stroke, and has also been successfully
employed in studies of longitudinal patterns of atrophy in Alzheimer's
patients (Raj et al., 2015), the spread of Progressive Supranuclear Palsy
(Pandya et al., 2017), cortical atrophy in temporal lobe epilepsy

(Abdelnour et al., 2015), and early Multiple Sclerosis (Kuceyeski et al.,
2015b).

2.3. Behavioural data

Every patient was assessed using the Comprehensive Aphasia Test
(CAT) (Swinburn et al., 2004). For ease of comparison across tasks, task
scores are expressed as T-scores, representing each patient's assessed
skill on each task (e.g., describing a picture; reading non-words) re-
lative to a reference population of 113 aphasic patients. The threshold
for impairment is defined relative to a separate population of 27 neu-
rologically normal controls such that performance below threshold
would place the patient in the bottom 5% of the normal population
(Swinburn et al., 2004). Lower scores indicate poorer performance. The
CAT yields 34 separate scores, though six refer to non-linguistic skills
such as line bisection, arithmetic and memory. Here, we focus initially
on scores in naming (i.e. of visually presented pictures), before
widening the analysis to include all of the other 27 language scores.
Detailed descriptions of the tasks are given in the CAT manual
(Swinburn et al., 2004).

2.4. The baseline model

Our aim here was to measure what the introduction of structural
(dis)connection variables buys us, in terms of improved predictive ac-
curacy. Our baseline for this comparison, is a model driven by variables
whose prognostic relevance is already supported by prior evidence: (i)
basic demographic data including time post-stroke (Hope et al., 2017;
Hope et al., 2013), age at stroke (Ramsey et al., 2017), pre-stroke
handedness (Knecht et al., 2000), and bilingualism (Hope et al., 2015);
(ii) lesion volume (Plowman et al., 2012); and (iii) lesion location
(Hope et al., 2013; Plowman et al., 2012; Yourganov et al., 2016),
which is calculated as described above. We use the term ‘lesion load
variables’ to refer to variables representing the proportion of each of a
series of anatomically defined regions, which is destroyed or en-
croached upon by each patient's lesion(s). We use the term ‘lesion load
model’ to refer to models driven by the combination of: (a) demo-
graphic and lesion volume variables, as described above; and (b) lesion
load variables.

2.5. Structural connectivity models

To measure whether structural connectivity variables add prog-
nostic information over and above that already conveyed by lesion-load
models, we compare the predictions made by lesion-load models to
those made using models which either: (a) replace the lesion load
variables with structural connectivity variables, or (b) add structural
connectivity variables to the lesion-load model, or (c) stack lesion-load
and connectivity models together. Like the lesion load model, all of
these models also include basic demographic data and lesion volume.
For the sake of brevity, we refer to them as: “connectivity models”,
‘lesion load plus connectivity models’, and “stacked models” in what
follows.

Stacking starts by training component models separately (e.g. a le-
sion-load model and a structural connectivity model), and using those
models to predict the language scores under study via cross-validation.
The resulting predictions are then used as input to a new model, also
trained to predict the same language scores. This new, higher level
model is also assessed in cross-validation, using the same folds as em-
ployed to generate the predictions from the component models. Our use
of this approach is motivated by recent work which employs stacking to
apparently good effect in this domain (Pustina et al., 2017), reporting
modest but significant improvements in predictive power over what
was possible with any component model alone. More generally,
stacking is thought to be useful when – as here – we want to combine
inferences made from datasets containing very unequal numbers of
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