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ARTICLE INFO ABSTRACT

With the advent of Big Data Imaging Analytics applied to neuroimaging, datasets from multiple sites need to be
pooled into larger samples. However, heterogeneity across different scanners, protocols and populations, renders
the task of finding underlying disease signatures challenging. The current work investigates the value of multi-
task learning in finding disease signatures that generalize across studies and populations. Herein, we present a
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:S}?;:yhrenia multi-task learning type of formulation, in which different tasks are from different studies and populations being
MRI P pooled together. We test this approach in an MRI study of the neuroanatomy of schizophrenia (SCZ) by pooling

data from 3 different sites and populations: Philadelphia, Sao Paulo and Tianjin (50 controls and 50 patients
from each site), which posed integration challenges due to variability in disease chronicity, treatment exposure,
and data collection. Some existing methods are also tested for comparison purposes. Experiments show that
classification accuracy of multi-site data outperformed that of single-site data and pooled data using multi-task
feature learning, and also outperformed other comparison methods. Several anatomical regions were identified
to be common discriminant features across sites. These included prefrontal, superior temporal, insular, anterior
cingulate cortex, temporo-limbic and striatal regions consistently implicated in the pathophysiology of schizo-
phrenia, as well as the cerebellum, precuneus, and fusiform, middle temporal, inferior parietal, postcentral,
angular, lingual and middle occipital gyri. These results indicate that the proposed multi-task learning method is
robust in finding consistent and reliable structural brain abnormalities associated with SCZ across different sites,
in the presence of multiple sources of heterogeneity.

1. Introduction

Neuroimaging studies have widely explored the clinical value of
machine learning methods for differentiating psychiatric patients from
healthy controls at the individual level. In addition to providing in-
dividualized indices for diagnostic purposes, machine learning methods
may ultimately help identify brain regions affected by disease in subtle
ways that can only be elucidated using multi-variate analysis. While
most of these neuroimaging studies to date have been performed using
single-site datasets, it is essential to integrate multi-site data for two
reasons. First, multi-site data provide sufficient statistical power for
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detecting subtle, but informative patterns of brain structure and func-
tion (Brown et al., 2011; Friedman et al., 2006; Schnack et al., 2010),
which may be difficult to unravel with the relative small sample sizes
usually acquired in single centers (Pearlson, 2009; Segall et al., 2009).
Second, large sample sizes enhance sample generalizability by pooling
large patient populations with diverse demographic features and clin-
ical characteristics including disease onset, symptom severity, and types
and duration of treatment (Brown et al., 2011; Friedman et al., 2006;
Glover et al., 2012; Pearlson, 2009; Sutton et al., 2008; Van Horn and
Toga, 2009). Multi-site studies are therefore becoming increasingly the
norm in neuroimaging research (Casey et al., 1998; Van Horn and Toga,
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2009).

Multi-site data reflect a more comprehensive abnormal pattern of
disease, and therefore may provide a richer understanding of disease
signatures than single-site data. However, two recent studies found that
simple pooling of multi-site data did not outperform single-site disease
classification. Colby (Colby et al., 2012) and Nielsen (Nielsen et al.,
2013) pooled multi-site data and trained a common classifier for all
data, to identify attention deficit hyperactivity disorder (ADHD) and
autism, respectively. Results in these two studies showed that the
pooled dataset exhibited lower accuracy than each single-site datasets.
Here we seek a new approach to synergistically integrating multi-site
data, by emphasizing two points. First, since datasets collected in
multiple imaging centers have a common disorder of interest (e.g.
schizophrenia (SCZ), in our experiments herein), the abnormal patterns
in each dataset are strongly related and thus, to some extent, may share
a common imaging signature. The pattern reproducibility among multi-
site data has been repeatedly demonstrated in several multi-site studies
on functional MRI (fMRI) (Casey et al., 1998; Costafreda et al., 2007;
Gee et al., 2015; Jovicich et al., 2015), morphometric MRI (Cannon
et al., 2014; Schnack et al., 2010), and diffusion-tensor imaging (DTI)
(Jovicich et al., 2014; Pfefferbaum et al., 2003). Most of these studies
arrived at similar conclusions, namely that with appropriate multi-site
data collection, different data sites shared highly consistent feature
patterns. With this, the site-shared features reveal consistent brain ab-
normalities in multi-site data, which can lead to a more accurate neu-
robiological understanding of the psychiatric disorder under in-
vestigation. On the other hand, though the integration of multiple
single-site data is advantageous, the unavoidable presence of site-spe-
cific features might decrease the accuracy of a classifier that merely
pools data together across studies. Heterogeneity can emanate from
multiple sources including scanner differences, differences in image
acquisition protocols, or ethnic and treatment differences among par-
ticipating patient populations (Jovicich et al., 2015; Schnack et al.,
2010; Van Horn and Toga, 2009). Given such site-related hetero-
geneity, multi-site datasets should not simply be merged into larger
cohorts for further machine learning investigation (Pan and Yang,
2010). In an attempt to eliminate or reduce the site-specific variability,
studies have suggested same scanning protocols, consistent scanner
parameters and etc. (Brown et al., 2011; Calhoun and Adali, 2009;
Pearlson, 2009; You et al., 2011) in data collection, as well as the uti-
lization of smoothness equalization (Friedman et al., 2006) and in-
dependent component analysis (Kim et al., 2009; Meda et al., 2008) in
data preprocessing. Despite these efforts, site-specific heterogeneities
still exist due to their complex causes (Pearlson, 2009; Segall et al.,
2009).

The above considerations highlight the need for a feature-learning
framework in multi-site disease classification that can extract the site-
shared features, while also accounting for the site-specific features; this
approach generally seeks an overarching signature of disease, whereas
it accommodates potential sub-cohort and other differences to be taken
into consideration. In recent years, multi-task learning has been suc-
cessful in learning task-shared and task-specific features simulta-
neously, which effectively improves generalization compared with
traditional machine learning methods. For example, support vector
machine (SVM) with single-task learning (Caruana, 1997) learns a
distinct feature pattern and finds a maximum margin hyperplane to
classify two groups, which extracts information within a single learning
task. In contrast, multi-task learning extracts a subset of task-shared
features to generate more accurate models on multiple tasks, with the
task-specific features learned simultaneously (Marquand et al., 2014).
The basic assumption of multi-task learning is that the feature weights
of different tasks share similar sparse patterns (Chen et al., 2012),
which can be learned by imposing sparsity regularization penalties on
the task weight matrix (Kumar and Daume III, 2012). l;-norm and I ;-
norm are two commonly used sparsity regulating terms in multi-task
learning, which enforces the weight matrix of different tasks to be
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sparse across all tasks. Particularly, an [;-norm term highlights task-
specific features by encouraging the weights of irrelevant features to be
very small (Wang et al., 2015), while I, ;-norm introduces group spar-
sity and enforces task-shared features to have larger weights (Watanabe
et al., 2014; Yan et al., 2015).

The advantage of multi-task learning makes it suitable for multi-site
data learning, considering the site as task, and the site-shared and site-
specific features as task-shared and task-specific features.
Neuroimaging studies have shown the effectiveness of performing
multi-task learning in the brain decoding and disease classification
(Marquand et al., 2014; Obozinski et al., 2010; Rao et al., 2013; Wang
et al., 2015; Watanabe et al., 2014). Specifically, multi-site fMRI data of
ADHD was demonstrated better than single-site classification by
learning site-shared and site-specific features using multi-task scheme
(Watanabe et al., 2014). In this work, though the multi-task learning
scheme successfully extracted site-shared and site-specific features in
multi-site data, the form of the objective function was rather complex
and specific as it included an I, ;-norm group sparsity regularization
term and a 6-D spatial structure penalty (generated by the GraphNet,
fused Lasso, or the isotropic total variation). In order to make the multi-
task learning scheme more simple and applicable, an objective function
including l;-norm and I, ;-norm penalty terms was used in the current
study (Wang et al., 2011; Wang et al., 2015).

Building upon this emerging literature, we aim to distinguish SCZ
patients from healthy controls across multiple-site MRI data using
multi-task learning. We hypothesized that using multi-task learning
framework on multi-site classification would not only have better per-
formance than single-site data classification, but would also identify the
abnormalities shared by all sites, and also specific to each site. These
site-shared brain structural alterations should be consistent with the
previously reported altered regions in SCZ, such as the brain regions
involving prefrontal, superior temporal, insular, temporo-limbic re-
gions, among others.

2. Materials and methods
2.1. Participants and MRI acquisitions

MRI data were collected by three academic centers, including lo-
cations in the United States (University of Pennsylvania; site A)
(Davatzikos et al., 2005), Brazil (University of Sao Paulo; site B)
(Schaufelberger et al., 2007; Zanetti et al., 2013), and China (Tianjin;
site C). From each site, a balanced dataset was obtained with 50 normal
controls (NCs) and 50 SCZ patients randomly selected from a larger
pool of available subjects. In total, we had 150 NCs and 150 SCZs,
which didn't differ by age and gender significantly (p > 0.05; see
Table 1).

All SCZ patients met DSM-1V criteria. Written informed consent was
obtained from all participants before MRI scanning. In site A, the 50
SCZ patients had chronic symptoms and were receiving treatment with
antipsychotics (mean duration of illness 16.2 + 12.3 years). In site B,
all SCZ subjects were recruited shortly after they made their first con-
tact with mental health services due to psychotic symptoms, and their
duration of illness was 1.0 + 1.3 years; 31 patients had been on anti-
psychotic treatment within 3 weeks of MRI, while the remaining 19
patients were free of antipsychotics at the time of MRI scanning. Site C
contributed 5 first-episode, never-treated SCZ patients and 45 chronic
SCZ patients under antipsychotic treatment (mean duration of illness
10.5 = 7.2years).

In site A, the imaging data were acquired using a Siemens Trio 3-T
scanner (Siemens Medical Systems, Erlangen Germany), with the fol-
lowing protocol: slice thickness = 1 mm, TE = 3.51 ms, TR = 18.1 ms,
flip angle =9°, acquisition matrix = 240 x 180, and slice
number = 160, no gaps, 1-mm isotropic voxels. In site B, the T1 images
were acquired using two identical 1.5-T GE Signa scanners (GE Medical
Systems, Milwaukee WI, USA) with the following protocol: T1-SPGR
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