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A B S T R A C T

Background: Temporal lobe surgical resection brings seizure remission in up to 80% of patients, with long-term
complete seizure freedom in 41%. However, it is unclear how surgery impacts on the structural white matter
network, and how the network changes relate to seizure outcome.
Methods: We used white matter fibre tractography on preoperative diffusion MRI to generate a structural white
matter network, and postoperative T1-weighted MRI to retrospectively infer the impact of surgical resection on
this network. We then applied graph theory and machine learning to investigate the properties of change be-
tween the preoperative and predicted postoperative networks.
Results: Temporal lobe surgery had a modest impact on global network efficiency, despite the disruption caused.
This was due to alternative shortest paths in the network leading to widespread increases in betweenness
centrality post-surgery. Measurements of network change could retrospectively predict seizure outcomes with
79% accuracy and 65% specificity, which is twice as high as the empirical distribution. Fifteen connections
which changed due to surgery were identified as useful for prediction of outcome, eight of which connected to
the ipsilateral temporal pole.
Conclusion: Our results suggest that the use of network change metrics may have clinical value for predicting
seizure outcome. This approach could be used to prospectively predict outcomes given a suggested resection
mask using preoperative data only.

1. Introduction

Epilepsy is a serious neurological disorder characterised by re-
current unprovoked seizures affecting 1% of the population.
Neurosurgical resection can bring remission in up to 80% of those with
refractory focal epilepsy, with 41% remaining entirely seizure free for
years (De Tisi et al., 2011). The most common type of epilepsy surgery
is anterior temporal lobe resection, in which the amygdala, anterior
hippocampus, and anterior temporal neocortex are removed. The
commonest neurological sequelae of temporal lobe surgery are memory
impairment, visual field deficits and word-finding difficulties (Jutila
et al., 2002; Gooneratne et al., 2017).

Recent studies have investigated surgical outcome by considering
the brain as a network of connected regions. Such networks can then be

subjected to quantitative analysis techniques, which measure local and
global properties in networks (see Bernhardt et al. (2015) for review).
Network measures that have been found to be altered in temporal lobe
epilepsy (TLE) include the clustering coefficient of a region, which
captures the connectedness of neighbours of a region (Bernhardt et al.,
2011). Furthermore, the strength of a connection (e.g. the number of
streamlines connecting two areas), or the strength of a region's con-
nectivity (e.g. the number of streamlines connecting a region to all
other regions) may also be altered in TLE (Besson et al., 2014a, 2014b;
Taylor et al., 2015). Another measure of a network is its efficiency,
which is a measure of network integration - i.e. how easy it is to travel
between one region to another via direct and indirect paths, and has
been shown to be altered in patients with TLE (Liu et al., 2014). Finally,
regression analysis and machine learning approaches have also been
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applied to brain networks of TLE to relate them to surgical outcome
(Bonilha et al., 2013; Munsell et al., 2015; Bonilha et al., 2015; Ji et al.,
2015).

A challenge in comparing networks across subjects is the choice of
an appropriate baseline or benchmark. There are two common ap-
proaches to this. One is to threshold the connectivity so that all subjects
have the same number of connections. A range of thresholds are then
checked, and the most significant results reported across thresholds
(Zhang et al., 2011). This has the drawback of removing ‘weak’ but
potentially important connections. A second approach is to compare the
network to a random network with the same number of regions and
connections. Typically this is done by either rewiring the existing net-
work (Maslov and Sneppen, 2002), or by generating a new network
according to predefined rules (Betzel et al., 2016; Bauer and Kaiser,
2017). Many different types of baseline networks can be used and this
will therefore influence results.

Recently Kuceyeski et al. (2013) introduced the network modifica-
tion (NeMo) tool in the context of stroke (Kuceyeski et al., 2015a,
2015b) and multiple sclerosis (Kuceyeski et al., 2015a, 2015b). The
NeMo tool is a method to enable a direct comparison between networks
that undergo change. For example, in their study of stroke, the authors
drew masks over stroke affected areas and overlaid this mask with data
from healthy subjects. Normal connectivity from the healthy subjects,
and altered connectivity (i.e. tracts which pass through the stroke
mask) were calculated. This approach allowed the authors to calculate a
change in connectivity metric (ChaCo), which was shown to correlate
with outcomes. Since the authors use the pre-stroke network as a
baseline to investigate the implied post-stroke differences, the analysis
is possible without the need to generate random networks or threshold
the connectivities. This obviates the need for arbitrarily chosen surro-
gate networks by effectively using the patient's own network as the
surrogate instead – a distinct advantage of the technique. A drawback of
that study is that the tractography was derived from a cohort of healthy
controls, rather than the stroke patients. Nonetheless, this framework is
ideally suited to investigate changes in networks, given a well-defined
alteration such as a stroke or surgery.

In this study we used a ChaCo-like approach in the context of epi-
lepsy surgery and addressed the following questions: What is the impact
of surgery on the patient's network? How does this impact graph the-
oretic properties such as region strength, network efficiency? Do these
changes to patient networks correlate with surgical outcome?

Although the resection masks we use in this study are derived ret-
rospectively from postoperative data, our methods could in future be
applied preoperatively using a mask of the intended resection.

2. Materials and methods

2.1. Patients & MRI acquisition

We retrospectively studied 53 patients who underwent temporal
lobe epilepsy surgery at the National Hospital for Neurology and
Neurosurgery, London, United Kingdom. Full patient details can be
found in Table S11, a summary is given in Table 1. Patient outcomes
were defined at 12months postoperatively, according to the ILAE
classification of surgical outcomes (Wieser et al., 2001) and separated
into two groups. Group 1 includes patients who were completely sei-
zure free (ILAE 1), and group 2 incorporates all other possibilities (ILAE
2–6). No patient had any prior history of neurosurgery. We used a χ2

test to check for differences between outcome groups in gender, side of
surgery, and evidence of hippocampal sclerosis. We applied Kruskal-
Wallis test to check for differences in age between outcome groups.

All patients underwent preoperative anatomical T1-weighted MRI
and preoperative diffusion MRI. Postoperative T1-weighted MRI was
obtained within 12months of surgery with the exception of one patient,
who was rescanned later.

MRI studies were performed on a 3T GE Signa HDx scanner (General

Electric, Waukesha, Milwaukee, WI). Standard imaging gradients with a
maximum strength of 40mTm−1 and slew rate 150 Tm−1 s−1 were
used. All data were acquired using a body coil for transmission, and 8-
channel phased array coil for reception. Standard clinical sequences
were performed including a coronal T1-weighted volumetric acquisi-
tion with 170 contiguous 1.1 mm-thick slices (matrix, 256×256; in-
plane resolution, 0.9375× 0.9375mm).

Diffusion MRI data were acquired using a cardiac-triggered single-
shot spin-echo planar imaging sequence (Wheeler-Kingshott et al.,
2002) with echo time= 73ms. Sets of 60 contiguous 2.4 mm-thick
axial slices were obtained covering the whole brain, with diffusion
sensitizing gradients applied in each of 52 noncollinear directions (b
value of 1,200mm2 s−1 [δ=21ms, Δ=29ms, using full gradient
strength of 40mTm−1]) along with 6 non-diffusion weighted scans.
The gradient directions were calculated and ordered as described
elsewhere (Cook et al., 2007). The field of view was 24 cm, and the
acquisition matrix size was 96×96, zero filled to 128×128 during
reconstruction, giving a reconstructed voxel size of
1.875×1.875×2.4mm. The DTI acquisition time for a total of 3480
image slices was approximately 25min (depending on subject heart
rate).

2.2. Image processing

2.2.1. T1 processing
Preoperative anatomical MRI was used to generate parcellated re-

gions of interest (network nodes: ROIs). We used two different ap-
proaches to do this, generating two different parcellation schemes.
First, we used the FreeSurfer recon-all pipeline (https://surfer.nmr.
mgh.harvard.edu/), which performs intensity normalization, skull
stripping, subcortical volume generation, gray/white segmentation,
and parcellation (Fischl, 2012). The default parcellation scheme from
FreeSurfer (the Desikan-Killiany atlas (Fischl et al., 2002; Desikan et al.,
2006)) contains 82 cortical ROIs and subcortical ROIs and is widely
used in the literature (e.g. Munsell et al., 2015; Taylor et al., 2015). The
method FreeSurfer uses to generate its ROIs uses anatomical priors
based on a manually annotated dataset from healthy controls. However,
this may be suboptimal in the case of disease and therefore, we use a
second approach based on geodesic information flow (GIF) to generate
ROIs which has the advantage of performing well even in the presence
of neuropathology (Cardoso et al., 2015). Using the GIF approach, we
generate 114 cortical and subcortical ROIs (Table 2). A drawback of
using the GIF approach is comparison to previous studies is less
straightforward since most previous work use alternative atlases. The
results presented in the main manuscript use the GIF derived ROIs,
while we include results using FreeSurfer derived ROIs in supplemen-
tary materials to aid comparison to previous studies.

2.2.2. DWI processing
Preoperative diffusion MRI data were first corrected for signal drift

(Vos et al., 2016), then eddy current and movement artefacts were

Table 1
Patient demographics and relation to outcome group.

ILAE 1 ILAE 2–6 Significance

N 36 (68%) 17 (32%)

Male/female 16/20 4/13 p=0.3597,
χ2=0.839

Left/right TLE 22/14 8/9 p=0.3353,
χ2=0.923

Age (mean, S.D./median,
I.Q.R.)

37, 11.6/
39.6, 19.25

41.5, 10.6/
42.3, 10.8

p=0.2374

Hippocampal sclerosis 25 (69%) 10 (59%) p=0.4460,
χ2=0.5808
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