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A B S T R A C T

White-matter lesion count and volume estimation are key to the diagnosis and monitoring of multiple sclerosis
(MS). Automated MS lesion segmentation methods that have been proposed in the past 20 years reach their
limits when applied to patients in early disease stages characterized by low lesion load and small lesions. We
propose an algorithm to automatically assess MS lesion load (number and volume) while taking into account the
mixing of healthy and lesional tissue in the image voxels due to partial volume effects. The proposed method
works on 3D MPRAGE and 3D FLAIR images as obtained from current routine MS clinical protocols. The method
was evaluated and compared with manual segmentation on a cohort of 39 early-stage MS patients with low
disability, and showed higher Dice similarity coefficients (median DSC=0.55) and higher detection rate
(median DR=61%) than two widely used methods (median DSC=0.50, median DR < 45%) for automated
MS lesion segmentation. We argue that this is due to the higher performance in segmentation of small lesions,
which are inherently prone to partial volume effects.

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease of the
central nervous system, characterized by inflammation, demyelination,
axonal loss, and gliosis (Noseworthy et al., 2000). Current MS diag-
nostic and follow-up criteria are exploiting magnetic resonance (MR)
imaging metrics of lesion load, i.e. lesion count and location, as well as
activity, i.e. gadolinium enhancement due to blood-brain barrier dis-
ruption (Rovira et al., 2015). The presence and spatial pattern of focal
lesions in MR images (“dissemination in space”) and the appearance of
new lesions (“dissemination in time”) are key components of current
diagnosis criteria (Filippi et al., 2016; Polman et al., 2011). The iden-
tification of focal pathology and of new lesions as well as their size

changes in follow-up scans are important to perform an early diagnosis,
quantifying ongoing disease activity and monitor treatment effects
(Filippi et al., 2016). Consequently, one current research focus has been
the development of automated MS lesion segmentation (Garcia-Lorenzo
et al., 2013; Lladó, Ganiler, et al., 2012; Lladó, Oliver, et al., 2012).

Automated segmentation approaches are either unsupervised or
supervised. Unsupervised approaches typically apply clustering algo-
rithms that make use of both image intensity from one or several MR
contrasts (T1-weighted, T2-weighted, proton-density-weighted, and/or
2D fluid-attenuated inversion recovery, FLAIR) and spatial information
derived from probabilistic atlases of healthy tissues and/or topological
constraints (Schmidt et al., 2012; Shiee et al., 2008; Souplet et al., 2008;
Tomas-Fernandez and Warfield, 2015; Van Leemput et al., 2001).
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Supervised approaches, on the other hand, rely on manually annotated
image sets used for training (Anbeek et al., 2004; Brosch et al., 2016;
Fartaria, Bonnier, et al., 2016; Morra et al., 2008; Sweeney et al., 2014).

We note that existing automated MS lesion segmentation methods
were mostly evaluated on patients in advanced MS stages, who have a
high disability, high numbers of lesions, and large lesion volumes
(Datta and Narayana, 2013; Sajja et al., 2006; Steenwijk et al., 2013;
Sweeney et al., 2013). They, however, showed substantially lower
performance when applied to subjects with lower disease burden, i.e.
lower lesion load and lesions of smaller size and volume (Anbeek et al.,
2004; Cabezas et al., 2014; Fartaria, Bonnier, et al., 2016; Steenwijk
et al., 2013; Sweeney et al., 2013). Automated MS lesion segmentation
seems to be barely used in clinical practice, where detecting new le-
sions, particularly of small size, is of key importance for early diagnosis
and follow-up of MS patients (Garcia-Lorenzo et al., 2013).

We showed in previous work that small lesions are strongly affected
by partial volume (PV) effects, rendering their detection, segmentation
and volume estimation challenging (Fartaria, O'Brien, et al., 2017).
Taking into account PV could consequently improve the detection of
small lesions and the overall lesion volume estimation. This idea was
investigated in the mid-90s by (Johnston et al., 1994), who proposed a
semi-automated method that takes partial volumes into account using
neighborhood and histogram analysis. The same group later added pre-
and post-processing steps of image enhancement and mathematical
morphology to improve the discrimination between healthy WM and
lesions (Johnston et al., 1996). Recently, (Khademi and Moody, 2015)
performed image classification using mixed tissue labels as in (Cuadra
et al., 2005; Shattuck et al., 2001) and estimated the PV fraction in
mixed classes using spatial image gradient analysis. Variants of this
approach using hierarchical mixture models are employed in
(Galimzianova et al., 2016; Sudre et al., 2015).

Here, we propose a novel method for MS lesion segmentation that
relies on a Bayesian PV estimation algorithm inspired by the “mixel”
model originally proposed by (Choi et al., 1991), which leads to an ill-
posed estimation problem for which (Roche and Forbes, 2014) pro-
posed regularizing priors. We further included spatial constraints to
estimate realistic concentration maps of healthy tissues (WM, GM, CSF),
and pathological brain tissue. These concentration maps are used to
directly compute lesion volumes rather than applying a correction of PV
effects in initial hard tissue classification as in previous methods
(Johnston et al., 1996; Khademi and Moody, 2015; Wu et al., 2006).
Our approach does not rely on edge detection and therefore has the
potential to assess PV effects in small lesions without clearly defined
boundaries.

2. Method

2.1. Partial volume estimation

We consider a set of nc images of a given subject acquired from
different MR image sequences and previously submitted to various pre-
processing steps including alignment, bias field correction and skull
stripping. Consistent with (Choi et al., 1991; Pham and Prince, 2000;
Roche and Forbes, 2014; Van Leemput et al., 2003), we assume that the
vector of image intensities yi at a voxel i in the total intra-cranial mask
relates to an unknown vector of tissue concentrations qi, with qi, t≥ 0
(the concentration of tissue t at voxel i is ≥0) and ∑ =q 1t

n
i t,

t (the sum
of the nt tissue concentrations at a voxel i is equal to one), through the
statistical relation:

= +y Mq ε ε N V, ~ (0, )i i i i (1)

whereM is an nc× nt matrix representing the mean tissue intensities for
each channel (nt is the number of distinct tissues and Mct represents the
mean intensity of tissue t in channel c), and N represents a multi-vari-
able Normal distribution with zero mean and covariance matrix
V= diag (σ12,…,σnc

2). We assumed that, in each MR sequence, image

intensities are corrupted with independent stationary Gaussian white
noise, as a first-order approximation to the non-central chi noise dis-
tribution that takes into account the coil combination in MRI (Larsson
et al., 2003). In this work, we consider nt=4 tissues: CSF, GM, WM and
lesions, as well as nc=2 contrasts: magnetization-prepared rapid gra-
dient echo (MPRAGE) and 3D FLAIR.

It was recognized 25 years ago (Choi et al., 1991) that recovering
the voxel-wise tissue concentrations qi from the above multichannel
image model leads to an ill-posed inverse problem if nt > nc+1, as it
is the case in our application. Recently, (Roche and Forbes, 2014)
proposed a prior concentration model to regularize the problem when
formulated via Bayesian maximum a posteriori (MAP) estimation:
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where nv is the total number of intra-cranial voxels, A is a symmetric
penalty matrix with zero diagonal and positive off-diagonal elements, β
is a positive constant, and Ni is the neighborhood of voxel i according to
the 6-topology (the 6 adjacent voxels connectedness in 3-dimensions).
Both the elements of A and β are hyperparameters to be tuned in a
learning phase. While β controls the amount of spatial smoothness of
tissue concentration maps, the purpose of A is to disentangle intensity
fluctuations due to noise from PV effects. Each non-diagonal element
acts as a penalty on the mixing of distinct tissues in a voxel, hence
limiting spurious concentration variations when a single tissue is pre-
sent. For instance, the larger A12, the less likely voxels contain both CSF
and GM.

We propose to generalize the prior model of (Roche and Forbes,
2014) by allowing voxel-dependent penalty matrices Ai including non-
zero diagonal elements in order to penalize tissues locally. This avoids
confusing GM and lesions, which have similar intensity signatures in
both MPRAGE and 3D FLAIR. Specifically, let πGM and πWM be a pro-
bablistic atlas-based prior probability map for the GM and WM, re-
spectively. We set the diagonal elements of Ai corresponding to CSF,
GM, WM and lesions, via:
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where the parameters a1 to a8 are pre-tuned with the smoothness
parameter β, which are assumed voxel-independent in our particular
implementation.

Following (Roche and Forbes, 2014), we estimate the tissue con-
centrations by MAP, yielding a quadratic programming problem:
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where each qi is searched in the multidimensional simplex. The solution
is evaluated using an iterative scheme that loops over the intra-cranial
voxels, and solves for the associated concentration vector qi with all
other concentration vectors held fixed using an active set algorithm
(Nocedal and Wright, 2006). This method proves very robust in prac-
tice, and typically converges in< 25 iterations.

2.2. Imaging parameters

The noise variance matrix V is initially assumed to be zero, and is
iteratively re-estimated by MAP concurrently with the tissue con-
centrations (see Section 2.1), yielding the update rule:
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