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ARTICLE INFO ABSTRACT

Keywords: Background: Motor functional neurological disorder (mFND) is a clinical diagnosis with reliable features;
Resting state functional magnetic resonance however, patients are reluctant to accept the diagnosis and physicians themselves bear doubts on potential
imaging misdiagnoses. The identification of a positive biomarker could help limiting unnecessary costs of multiple re-

Functional connectivity
Functional neurological disorder
Biomarker

Classification

ferrals and investigations, thus promoting early diagnosis and allowing early engagement in appropriate
therapy.

Objectives: To test whether resting-state (RS) functional magnetic resonance imaging could discriminate patients
suffering from mFND from healthy controls.

Methods: We classified 23 mFND patients and 25 age- and gender-matched healthy controls based on whole-
brain RS functional connectivity (FC) data, using a support vector machine classifier and the standard
Automated Anatomic Labeling (AAL) atlas, as well as two additional atlases for validation.

Results: Accuracy, specificity and sensitivity were over 68% (p = 0.004) to discriminate between mFND patients
and controls, with consistent findings between the three tested atlases. The most discriminative connections
comprised the right caudate, amygdala, prefrontal and sensorimotor regions. Post-hoc seed connectivity analyses
showed that these regions were hyperconnected in patients compared to controls.

Conclusions: The good accuracy to discriminate patients from controls suggests that RS FC could be used as a
biomarker with high diagnostic value in future clinical practice to identify mFND patients at the individual level.

1. Introduction

Motor functional neurological disorder (mFND) — formerly called
“hysteria” — represents a clinical diagnosis for which positive bedside
signs exist (Daum et al., 2014), and treating clinicians, mostly neurol-
ogists and psychiatrists, can refer to established diagnostic criteria
(Diagnostic and Statistical Manual of Mental Disorders (DSM-5)). Even
though misdiagnosis rates are low (Stone et al., 2009), neurologists still
fear missing an underlying organic pathology (Slater, 1965) and a
majority continue to engage in an exclusionary process involving many
additional investigations (Espay et al., 2009). A misdiagnosis in the
other direction - i.e., diagnosing an organic disease when the actual
diagnosis is mFND - can also have serious consequences for the patients
as this results in unnecessary treatments such as thrombolysis

(Vroomen et al., 2008). Appropriate therapy is then delayed, which
importantly impacts outcome (Gelauff et al., 2014) and societal costs
(Carson et al., 2011).

Besides the fear of misdiagnosis, neurologists avoid discussing the
diagnosis of functional neurological disorder (FND) with their patients
(Kanaan et al., 2009a) because they themselves bear doubts about an
alternate explanation for the symptoms of feigning (Kanaan et al.,
2009b). Patients in turn feel their doctors do not understand them,
which leads to multiple consultations for the same symptoms and
change of general practitioner (Crimlisk et al., 2000). The identification
of a positive biomarker for mFND could strengthen the physician's
clinical diagnosis and reassure the patients, thus limiting unnecessary
costs of multiple referrals and investigations, promoting an early di-
agnosis and allowing early engagement in appropriate therapy.
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A new and promising tool in the search of biomarkers for neu-
ropsychiatric disorders is resting-state (RS) functional magnetic re-
sonance imaging (fMRI) (Woodward and Cascio, 2015) which allows
the study of blood oxygen level dependent (BOLD) signal fluctuations
generated under resting conditions. The temporal correlation between
the time courses of different brain regions is computed to obtain mea-
sures of functional connectivity (FC). Compared to active tasks, the
advantage of RS fMRI is that behavioral differences between patients
and controls have lower impact on the interpretation of the results.

Literature in functional neuroimaging of mFND has been dominated
by task-based studies, all aiming at uncovering the neural correlates of
the disorder. Two RS studies in mFND patients (Maurer et al., 2016;
Baek et al., 2017) have investigated neural correlates of the disorder
but no studies to date have used a multivariate classification approach
to investigate RS FC as a potential positive biomarker. The aim of our
study was therefore to use whole-brain RS FC in a predictive setting to
discriminate mFND patients from healthy controls.

2. Methods and materials
2.1. Participants

53 subjects (26 mFND patients and 27 controls matched for age and
gender) participated in the study (Table 1). Three patients (1 patient
with movement disorders and 2 patients with weakness) and 2 healthy
controls were excluded from analysis due to excessive movement in the
scanner, resulting in a total sample of 48 subjects. Patients were re-
cruited from the outpatient clinic of a tertiary university hospital
(University Hospitals Geneva, Department of Clinical Neurosciences).
Two board-certified neurologists (SG or SA) confirmed the diagnosis of
FND according to DSM-5 criteria and using motor positive signs (e.g.,
Hoover sign or tremor variability, distractibility and entrainment test).
Healthy control subjects (with a similar sociodemographic background
and individually matched to the patients by age and sex) were recruited
via advertisement. For both groups, the main exclusion criteria were
current neurological disorders, substance dependence and contra-
indications for MRI scanning. The study was approved by the ethics
committee of the University Hospitals of Geneva (CER 14-088). All
participants gave written informed consent in accordance with the
Declaration of Helsinki.

2.2. Data acquisition

2.2.1. Clinical evaluation

Participants completed the State Anxiety Inventory (STAI-S) (CDG
et al.,, 1983) and the Beck Depression Inventory (BDI) (Beck et al.,
1996) on the day of MRI session. Clinical severity of the motor

Table 1
Demographic values and clinical scores.

mFND patients Healthy controls P-value
(n = 23) (n = 25)
Age, mean (SD), years 42.4 (13.9) 42.4 (13.0) 0.985
Gender (females/males) 21/2 22/3 0.708
Type of symptom 11 weakness NA
12 tremor/jerks/
dystonia
Disease severity (median 2 NA
CGD)
Disease duration, mean 4.8 (6.3) NA
(SD), months
BDI score, mean (SD) 7.5 (5.2) 1.9 (6.1) < 0.001%
STAI-S score, mean (SD) 34.8 (9.4) 34(8.1) 0.940

STAI-S: Anxiety State value, BDI: Beck Depression Index, CGI: Clinical Global Impression.
SD = standard deviation; NA = not applicable.
? Significantly different between groups.
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symptom was evaluated by the neurologists with a 0-5 Clinical Global
Impression Score (CGI) (0 = no symptom to 5 = very disabling
symptom).

2.2.2. MRI acquisition parameters

MRI was performed using a 3.0 Tesla unit (Siemens, Magnetom
TrioTim). Functional imaging data and one structural image were ac-
quired in one session. fMRI data were acquired using a whole-brain
single shot multi-slice BOLD echo-planar-imaging (EPI) sequence with
the following parameters: TR: 2s; TE: 20 ms; flip angle 80°; PAT
factor = 2; FOV: 240 mm; matrix size: 64 X 64 X 40; 2.5 mm slice
thickness; interslice gap 1.1125 mm; voxel size
3.00 x 3.00 x 2.50 mm; TA: 5:08 min, 150 functional images.

During the RS fMRI session, the subjects were instructed to lie still,
to think of nothing in particular and to watch a cross symbol projected
on a black screen. The scan protocol for structural MRI consisted of a
T1-weighted MPRAGE sequence with the following parameters: TR:
1.9s; TE: 2.27 ms; flip angle = 9°; PAT factor = 2, voxel size
1.0 X 1.0 x 1.0 mm; acquisition time: 5:04.

2.3. Data analyses

Demographic and clinical data were compared between the two
groups with two-sample t-tests or Mann-Whitney U tests (depending on
the distribution normality), and the chi2 test when appropriate.

2.3.1. Preprocessing of imaging data

For preprocessing, we relied on a previously used pipeline
(Richiardi et al., 2012) using SPM12 tools (http://www.fil.ion.ucl.ac.
uk/spm/software/spm12/). Functional images were first realigned,
then the mean functional image was co-registered with the structural
image. The latter was segmented into grey matter, white matter, and
cerebrospinal fluid. A customized version of the IBASPM toolbox
(Aleman-Gomez et al., 2006) was used to build an individual structural
brain atlas, based on the AAL atlas (Tzourio-Mazoyer et al., 2002). In
order to check the consistency of the results, two other atlases, the
Hammers probabilistic structural atlas (Hammers et al., 2003), and the
Shirer functional atlas (Shirer et al., 2012), were additionally chosen for
comparison. The atlas was then mapped back onto the native resolution
of the functional data, and region-averaged time series were extracted.
The first 10 time points were discarded to ensure magnetization equi-
librium. Motion parameters, as well as the average signal of a mask of
white matter and cerebrospinal fluid, were regressed out. Time series
were Winsorized to the 95th percentile to increase robustness to out-
liers (e.g., spikes). Time courses were then filtered into frequency
subbands using a wavelet transform (cubic orthogonal B-spline wave-
lets). Five frequency subbands were extracted, respectively with main
bandpass characteristics at 0.5-1 Hz, 0.25-0.5 Hz, 0.125-0.25 Hz,
0.0625-0.125 Hz, and 0.0312-0.0625 Hz. We investigated alterations
of FC in the latter subband (0.0312-0.0625 Hz), as this subband re-
presents typical low-frequency RS fluctuations. Motion-related artefacts
were accounted for as described in Supplemental File Appendix 1.

2.3.2. RS FC modelling and classification

We computed pairwise Pearson correlation coefficients between all
atlas regions in order to obtain a correlation matrix (number of re-
gions X number of regions) for each subject (see Supplemental File,
Appendix 2). Next, we converted the correlation coefficients to z-scores
using Fisher-Z transformation, and used them as features for the clas-
sifier by reshaping the upper-triangular part of the matrix (excluding
the diagonal) as a vector.

We used a linear Support Vector Machine (SVM) classifier with L2
regularization to learn a discriminant function that would optimally
separate the two groups. The SVM is a supervised learning method that
performs binary classification, by building the largest-margin hyper-
plane allowing for an optimal separation of the training examples. We
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