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A B S T R A C T

Migraineurs show an increased load of white matter hyperintensities (WMHs) and more rapid deep WMH
progression. Previous methods for WMH segmentation have limited efficacy to detect small deep WMHs. We
developed a new fully automated detection pipeline, DEWS (DEep White matter hyperintensity Segmentation
framework), for small and superficially-located deep WMHs. A total of 148 non-elderly subjects with migraine
were included in this study. The pipeline consists of three components: 1) white matter (WM) extraction, 2)
WMH detection, and 3) false positive reduction. In WM extraction, we adjusted the WM mask to re-assign
misclassified WMHs back to WM using many sequential low-level image processing steps. In WMH detection, the
potential WMH clusters were detected using an intensity based threshold and region growing approach. For false
positive reduction, the detected WMH clusters were classified into final WMHs and non-WMHs using the random
forest (RF) classifier. Size, texture, and multi-scale deep features were used to train the RF classifier. DEWS
successfully detected small deep WMHs with a high positive predictive value (PPV) of 0.98 and true positive rate
(TPR) of 0.70 in the training and test sets. Similar performance of PPV (0.96) and TPR (0.68) was attained in the
validation set. DEWS showed a superior performance in comparison with other methods. Our proposed pipeline
is freely available online to help the research community in quantifying deep WMHs in non-elderly adults.

1. Introduction

Migraine is neurological disorder affecting ~20% of people world-
wide. While it is believed that migraine is a benign disease, the risk of
stroke, cardiovascular diseases, and death is increased in migraineurs
(Kurth et al., 2016). Migraineurs show an increased load of white
matter hyperintensities (WMHs) and more rapid WMH progression than
migraine-free controls (Erdélyi-Bõtor et al., 2015; Kruit et al., 2004;
Palm-Meinders et al., 2012). In addition, common psychiatric co-
morbidities of migraine such as depression and increased suicidality are
also associated with increased WMH load (Herrmann et al., 2008;
Serafini et al., 2011). A vascular hypothesis is commonly proposed as a
possible pathophysiology underlying deep WMH development, while

the development of periventricular WMH is currently more debated
(Fazekas et al., 1993; Fernando et al., 2006).

WMHs have been linked to several neurological disorders such as
vascular cognitive impairment. WMHs are also prevalent in the healthy
population, which has led to debate on the clinical importance of
WMHs in asymptomatic subjects (Mineura et al., 1995). However, re-
cent studies have shown that WMHs are associated with an increased
risk of cognitive decline, incident dementia, ischemic stroke, and death
in asymptomatic healthy subjects (Debette and Markus, 2010; Murray
et al., 2010; Vermeer et al., 2003). While the causative role of WMH for
these conditions is still considered controversial, these findings may
indicate that WMH can be a marker of brain damage, warranting more
research on their development in earlier life.
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As first suggested by Fazekas et al., WMHs have been classified into
periventricular and deep WMHs (Fazekas et al., 1987). Risk factors and
clinical implications differ between the two types of WMHs (Griffanti
et al., 2017; Kim et al., 2008). In the CAMERA-2 study, women with
migraine had a higher incidence and progression of deep WMHs, while
such an association was not found for periventricular WMHs (Palm-
Meinders et al., 2012). Longitudinal studies demonstrated that the
progression of periventricular WMH is associated with a decline in
cognitive function and cerebral blood flow, while no such association
was found with deep WMHs (Seo et al., 2012; ten Dam et al., 2007; Van
Dijk et al., 2008). Different pathogeneses may be involved in the de-
velopment of periventricular and deep WMHs (Kim et al., 2008). Au-
topsy studies suggested that deep WMHs were of hypoxic/ischemic
origin, while periventricular WMHs seldom showed markers of
ischemia. Periventricular WMHs are strongly related to advanced age
and arterial hypertension, but this association is weaker for deep WMHs
(Griffanti et al., 2017). Taken together, deep WMHs might be more
relevant to migraine and its ischemic complications than periven-
tricular WMHs.

Currently available methods for automated quantification of WMH
are less robust in the segmentation of small, juxtacortical deep WMHs
(Griffanti et al., 2017). In previous studies on WMH segmentation, only
elderly subjects with a high load of both periventricular and deep
WMHs were recruited (Griffanti et al., 2016; Jeon et al., 2011; Klöppel
et al., 2011; Yoshita et al., 2006). However, in young healthy subjects,
WMHs are often discrete, small-sized, and located in the deep white
matter (Hopkins et al., 2006). Therefore, accuracy of the detection of
small, superficially-located WMHs has not been adequately evaluated in
the literature. Furthermore, a simple intensity-based thresholding
technique has been widely used to detect WMHs in previous studies
(Hulsey et al., 2012; Ithapu et al., 2014; Jeon et al., 2011; Klöppel et al.,
2011). However, this technique is not optimal for detection of small or
low-intensity WMHs because lowering the threshold of WMH segmen-
tation increases the rate of false-positives. In addition, this technique
might underestimate superficially-located deep WMHs due to the si-
milar intensities between gray matter (GM) and WMHs (Jeon et al.,
2011). However, when examining WMHs among young healthy in-
dividuals, it is crucial to detect small, relatively low-intensity, and su-
perficially-located deep WMHs, which have been difficult to identify to
date. To overcome the limitations of previous detection methods, sev-
eral characteristics of deep WMHs, such as intensity value, shape, and
location should be considered.

In the current study, we developed a new, fully-automated, machine
learning-based pipeline for detecting deep WMHs, DEWS (DEep White
matter hyperintensity Segmentation framework), using non-elderly
migraineurs. For accurate detection of small, superficially-located deep
WMHs, we established a new procedure for WM mask extraction and a
classification model based on size, texture and multi-scale deep features
as well as intensity threshold information.

2. Materials and methods

The proposed pipeline of this study consisted of three components:
1) WM extraction, 2) WMH detection, and 3) false positive (FP) re-
duction. The overall scheme of our pipeline is given in Fig. 1.

2.1. Participants and imaging data

We prospectively collected magnetic resonance imaging (MRI) data
of new patients diagnosed with migraine at the Samsung Medical
Center headache clinic from January 2015 to January 2017. The di-
agnosis of migraine was confirmed by two headache specialists (MJL
and C-SC) based on the International Classification of Headache
Disorders-3rd edition beta version (ICHD-3 beta) (Headache
Classification Committee of the International Headache Society [IHS],
2013). We included patients with 1.1 migraine without aura, 1.2.1

migraine with typical aura, and 1.3 chronic migraine. A total of 233
non-elderly patients aged≤ 65 who voluntarily underwent brain MRI
during the study period were considered eligible for the analysis. After
reviewing all MRI data, we excluded 67 subjects with motion-related
artifacts and 18 subjects who did not have deep WMHs in their MRI
scan. Finally, 148 subjects were enrolled in the study. This study was
approved by the Institutional Review Board (IRB) of Samsung Medical
Center. Written consent was waived by the IRB.

The T1-weighted and fluid attenuated inversion recovery (FLAIR)
MRI scans were acquired using a 3 Tesla MR scanner (Achieva, Philips
Medical Systems, Best, Netherlands). The imaging parameters of T1-
weighted data were as follows: repetition time (TR)=9.9ms; echo
time (TE)= 4.6ms; field of view (FOV)=240×240mm2; acquisition
matrix= 480×480 pixels; and slice thickness= 1mm with 360 slices.
The imaging parameters of the FLAIR data were as follows:
TR=11,000ms; TE= 125ms; inversion time=2800ms;
FOV=240×240mm2; acquisition matrix= 512×512 pixels; and
slice thickness= 2mm with 80 slices. The same MRI scanner and
protocol were applied for all subjects during the study period.

2.2. Manual annotations of WMHs

The manual annotations of deep WMHs were drawn on the 2D slice
of FLAIR images by two investigators (MJL, a neurologist with 8 years
of experience in clinical neurology, and JC with 11 years of experience
in neuroradiology) who were blinded to the clinical information. WMHs
were defined as a round- or oval-shaped FLAIR hyperintensity with a
variable size in the U-fiber or subcortical WM, which can be discrete or
confluent and showed T1 iso- or hypo-intensity (Wardlaw et al., 2013).
WMHs were carefully differentiated from subcortical infarctions, peri-
vascular spaces, and artifacts (Kwee and Kwee, 2007; Wardlaw et al.,
2013). Periventricular WMHs and lacunes in deep nuclei were excluded
from the manual annotations. Periventricular WMH was defined as
hyperintensities along the walls of ventricles with an appearance of
small caps, thin rims, or confluent lesions (Fazekas et al., 1987; van den
Heuvel et al., 2006). The intra-class correlation coefficient between the
two raters was 0.994 (95% confidence interval between 0.968 and
0.999) for the number of WMHs for each subject.

2.3. WM extraction

The overall processing was performed using AFNI, FSL, and
MATLAB (Cox, 1996; Jenkinson et al., 2012). The T1-weighted and
FLAIR data were reoriented to the right-posterior-inferior (RPI) direc-
tion and the T1-weighted data were registered onto the FLAIR data
using rigid body transformation. The magnetic field bias for both the
T1-weighted and FLAIR data was corrected and the skull was removed
(Fig. 1A). The T1-weighted data were segmented into GM, WM, and
cerebrospinal fluid (CSF) using FSL (Fig. 1A). However, due to the si-
milar intensities between WMH and GM, some voxels of the WMH were
misclassified to GM. The following steps were performed to adjust the
WM mask to include WMH voxels. The segmented WM mask was di-
lated and eroded in the axial plane (both x and y directions) with disk
size of 5 voxels to fill the holes (shown in yellow circles) in the WM
mask which were due to the misclassified WMH voxels (Fig. 1B). The
segmented GM mask was adjusted by multiplying the GM partial vo-
lume effect (PVE) mask with the complement (i.e., logical negative) of
the WM mask of the previous step. The adjusted GM mask was dilated
in the axial plane with a disk size of 2 voxels (Fig. 1B). The segmented
CSF mask was skeletonized and dilated in the axial direction with a disk
size of 6. The ventricle mask was extracted from the segmented CSF
mask using the region growing method in each slice. The ventricle mask
was dilated in all three directions with a sphere radius of 5 voxels to
remove potential periventricular WMHs and MRI induced artifacts near
the ventricle which could be misjudged as periventricular WMHs
(Fig. 1B). The deep brain structures of the hippocampus, amygdala,
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