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A B S T R A C T

Background: Machine learning techniques such as support vector machine (SVM) have been applied recently in
order to accurately classify individuals with neuropsychiatric disorders such as Alzheimer's disease (AD) based
on neuroimaging data. However, the multivariate nature of the SVM approach often precludes the identifi-
cation of the brain regions that contribute most to classification accuracy. Multiple kernel learning (MKL) is a
sparse machine learning method that allows the identification of the most relevant sources for the classifi-
cation. By parcelating the brain into regions of interest (ROI) it is possible to use each ROI as a source to MKL
(ROI-MKL).
Methods: We applied MKL to multimodal neuroimaging data in order to: 1) compare the diagnostic performance
of ROI-MKL and whole-brain SVM in discriminating patients with AD from demographically matched healthy
controls and 2) identify the most relevant brain regions to the classification. We used two atlases (AAL and
Brodmann's) to parcelate the brain into ROIs and applied ROI-MKL to structural (T1) MRI, 18F-FDG-PET and
regional cerebral blood flow SPECT (rCBF-SPECT) data acquired from the same subjects (20 patients with early
AD and 18 controls). In ROI-MKL, each ROI received a weight (ROI-weight) that indicated the region's relevance
to the classification. For each ROI, we also calculated whether there was a predominance of voxels indicating
decreased or increased regional activity (for 18F-FDG-PET and rCBF-SPECT) or volume (for T1-MRI) in AD pa-
tients.
Results: Compared to whole-brain SVM, the ROI-MKL approach resulted in better accuracies (with either atlas)
for classification using 18F-FDG-PET (92.5% accuracy for ROI-MKL versus 84% for whole-brain), but not when
using rCBF-SPECT or T1-MRI. Although several cortical and subcortical regions contributed to discrimination,
high ROI-weights and predominance of hypometabolism and atrophy were identified specially in medial
parietal and temporo-limbic cortical regions. Also, the weight of discrimination due to a pattern of increased
voxel-weight values in AD individuals was surprisingly high (ranging from approximately 20% to 40% de-
pending on the imaging modality), located mainly in primary sensorimotor and visual cortices and subcortical
nuclei.
Conclusion: The MKL-ROI approach highlights the high discriminative weight of a subset of brain regions of
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known relevance to AD, the selection of which contributes to increased classification accuracy when applied to
18F-FDG-PET data. Moreover, the MKL-ROI approach demonstrates that brain regions typically spared in mild
stages of AD also contribute substantially in the individual discrimination of AD patients from controls.

1. Introduction

Many neuroimaging studies to date have investigated brain ab-
normalities associated with the diagnosis of Alzheimer's disease (AD),
most often using magnetic resonance imaging (MRI), 18F-fluorodeox-
yglucose-positron emission tomography (18F-FDG-PET) to measure re-
gional brain metabolism, and single photon emission computed tomo-
graphy (SPECT) to measure regional cerebral blood flow (rCBF SPECT)
(Johnson et al., 2012; Matsuda, 2007; Nordberg et al., 2010; Vemuri
et al., 2010). These studies have typically carried out comparisons of
mean imaging indices between samples of AD patients and healthy el-
derly controls across separate brain regions using either regions of in-
terest (ROIs) (Kinkingnéhun et al., 2008; Lehmann et al., 2011;
Nadkarni et al., 2012; Ortiz et al., 2014) or voxel-based techniques,
applying mass univariate approaches for statistical inference
(Kinkingnéhun et al., 2008; Lehmann et al., 2011; Matsuda, 2013).
These imaging studies have identified abnormalities in several brain
regions in association with the diagnosis of AD from early stages of the
disease onwards (Mosconi et al., 2009; Ruan et al., 2016; Thompson
et al., 2004). When such traditional mass-univariate approach is used,
the detection of the relevance of different brain regions to characterize
AD is straightforward; since each ROI or voxel is treated independently,
thresholds based on statistical significance and spatial extent can be
applied to the statistical parametric results in order to select clusters of
voxels with greatest relevance to distinguish AD patients from controls
(Ashburner and Friston, 2000; Busatto et al., 2008; Guo et al., 2010;
Hirata et al., 2005; Karas et al., 2003).

More recently, a number of neuroimaging investigations of AD have
applied machine learning (ML) techniques that allow detection of
spatially complex and often subtle neuroimaging patterns of brain ab-
normalities in individual subjects, building high-dimensional classifiers
based on multivariate methods that simultaneously assess multiple
voxels within the brain space (Davatzikos et al., 2008; Duara et al.,
2013; Klöppel et al., 2008; Ritter et al., 2015; Zhang et al., 2011).
Rather than determining statistical group differences, this approach
allows classification of images of each subject, providing individual
predictions which might ultimately be used in the clinical context
(Ferreira and Busatto, 2011; Mcevoy et al., 2009; Petersen et al., 2010;
Ruan et al., 2016; Zhang et al., 2011). In contrast with the above mass-
univariate strategies, the determination of the most relevant voxels that
characterize the difference between groups is not as easily achieved in
ML-based approaches, as the weight of each voxel to classify groups
depends on all the other voxels, in a multivariate model. In order to
address this problem, strategies aiming to select the most relevant
voxels to be used as input to the models may be sought to facilitate the
interpretation of the weight maps.

In recent years, Multiple Kernel Learning (MKL) approaches have
been proposed to combine multiple sources of data in ML algorithms.
Up to the present date, the MKL approach has been applied to neuroi-
maging data predominantly to combine different representations
(usually two or more imaging modalities) (Hinrichs et al., 2009; Liu
et al., 2014). However, some recent pilot investigations have proposed
models in which subsets of features are used as sources of data (Castro
et al., 2014; Xia et al., 2014). If these subsets of features are extracted
according to some neuroanatomical criterion, it is possible to obtain
predictions based on anatomical localization (Mourão-Miranda et al.,
2012) and to help to determine which are the most relevant brain re-
gions that contribute to group classification.

In the present study, we aimed to investigate the predictive power of
MKL models using ROIs (MKL-ROI) to classify patients with mild AD

versus age- and gender-matched healthy controls, using a multimodal
neuroimaging approach comprising morphological MRI, 18F-FDG-PET
and rCBF-SPECT data. In contrast with the vast majority of ML-based
studies of AD using multimodal imaging designs, we examined exactly
the same subjects using the three neuroimaging modalities, with short
time intervals between the scanning sessions. We aimed to rank the
brain regions affording the greatest degree of discrimination between
AD patients and controls according to their contributing weights in
each imaging modality, and to establish whether the contribution of
each brain region was due to predominantly increased or decreased
voxel values in AD patients compared to controls. In addition, diag-
nostic accuracy indices obtained with the MKL-ROI approach were
compared to the indices obtained with Support Vector Machine (SVM)
based on the whole-brain. Finally, since recent investigations have
suggested that the choice of brain atlas for feature extraction may exert
a significant influence on the accuracy of MRI or PET-FDG data in SVM
studies of elderly populations (Ota et al., 2014), we compared MKL-ROI
results obtained with two different atlases to delineate ROIs, in order to
verify the robustness of the accuracies and ranking of weights for each
selected brain region.

2. Material and Methods

2.1. Subjects

Thirty-eight individuals were enrolled in this study (20 patients
with mild AD and 18 healthy elderly volunteers). The investigation was
approved by the ethical committee of the involved institutions and all
participants provided informed consent. For both groups, the exclusion
criteria were as follows: less than four years of education, age below 60
or above 90 years, use of psychotropic drugs, diabetes mellitus, pre-
sence of systemic disorders associated with cognitive decline, contra-
indications for MRI and brain lesions incidentally detected on MRI.

All patients fulfilled the DSM-III-R (American Psychiatric
Association, 1987) and NINCDS/ADRDA (McKhann et al., 1984) cri-
teria for mild dementia and probable AD. Their Clinical Dementia
Rating (CDR) scale was lower or equal to 1 (Morris, 1993). As the data
were collected before the publication of the new 2011 NINCDS/ADRDA
criteria for Alzheimer's disease (McKhann et al., 2011), the criteria for
probable Alzheimer's disease from 1984 were used (McKhann et al.,
1984).

Healthy controls did not present memory deficits or cognitive im-
pairments (CDR = 0). Table 1 presents age, gender, education and re-
sults from Mini Mental State Examination (MMSE) of AD patients and
healthy volunteers. Further details regarding the demographic and
clinical characteristics of AD subjects and controls can be found in
(Buchpiguel et al., 2014).

Table 1
Demographic characteristics of the participants.

Healthy participants Patients with AD p-value

Age: mean (SD) 72.7 (4.2) 75.5 (4.0) 0.06
Sex: male (female) 7 (11) 9 (11) 0.70
Education in years: mean (SD) 10.4 (4.8) 7.3 (3.9) 0.05
MMSE: mean (SD) 28.1 (1.3) 21.3 (2.8) < 0.01

AD – Alzheimer's disease; SD – standard deviation. The p-value was obtained using chi-
square (for gender) and Mann-Whitney tests (for the continuous variables).
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