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A B S T R A C T

White matter hyperintensities (WMH) are a feature of sporadic small vessel disease also frequently observed in
magnetic resonance images (MRI) of healthy elderly subjects. The accurate assessment of WMH burden is of
crucial importance for epidemiological studies to determine association between WMHs, cognitive and clinical
data; their causes, and the effects of new treatments in randomized trials. The manual delineation of WMHs is a
very tedious, costly and time consuming process, that needs to be carried out by an expert annotator (e.g. a
trained image analyst or radiologist). The problem of WMH delineation is further complicated by the fact that
other pathological features (i.e. stroke lesions) often also appear as hyperintense regions. Recently, several
automated methods aiming to tackle the challenges of WMH segmentation have been proposed. Most of these
methods have been specifically developed to segment WMH in MRI but cannot differentiate between WMHs and
strokes. Other methods, capable of distinguishing between different pathologies in brain MRI, are not designed
with simultaneous WMH and stroke segmentation in mind. Therefore, a task specific, reliable, fully automated
method that can segment and differentiate between these two pathological manifestations on MRI has not yet
been fully identified. In this work we propose to use a convolutional neural network (CNN) that is able to
segment hyperintensities and differentiate between WMHs and stroke lesions. Specifically, we aim to distinguish
between WMH pathologies from those caused by stroke lesions due to either cortical, large or small subcortical
infarcts. The proposed fully convolutional CNN architecture, called uResNet, that comprised an analysis path,
that gradually learns low and high level features, followed by a synthesis path, that gradually combines and up-
samples the low and high level features into a class likelihood semantic segmentation. Quantitatively, the
proposed CNN architecture is shown to outperform other well established and state-of-the-art algorithms in
terms of overlap with manual expert annotations. Clinically, the extracted WMH volumes were found to cor-
relate better with the Fazekas visual rating score than competing methods or the expert-annotated volumes.
Additionally, a comparison of the associations found between clinical risk-factors and the WMH volumes gen-
erated by the proposed method, was found to be in line with the associations found with the expert-annotated
volumes.

1. Introduction

1.1. Clinical motivation

White matter hyperintensities (WMH), referred to in the clinical
literature as leukoaraiosis, white matter lesions or white matter disease
(Wardlaw et al., 2013), are a characteristic of small vessel disease
(Wardlaw and Pantoni, 2014) commonly observed in elderly subjects

on fluid-attenuated inversion recovery (FLAIR) magnetic resonance
(MR) images, which, as the name suggests, they appear as hyperintense
regions. Moreover, stroke lesions of cortical, large subcortical (striato-
capsular) or small subcortical infarct origin can also often appear as
hyperintense regions in FLAIR MR images and can coexist and coalesce
with WMHs. The accurate assessment of WMH burden is of crucial
importance for epidemiological studies to determine associations be-
tween WMHs, cognitive and clinical data. Similarly, it would help
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discover their causes, and the effects of new treatments in randomized
trials. In the assessment of WMH burden it is important to exclude
stroke lesions as they have different underlying pathologies, and failure
to account for this may have important implications for the design and
sample size calculations of observational studies and randomized trials
using WMH quantitative measures, WMH progression or brain atrophy
as outcome measures (Wang et al., 2012). One of the most widely used
metrics to assess WMH burden and severity is the Fazekas visual rating
scale (i.e. score) (Fazekas et al., 1987). In this scale, a radiologist vi-
sually rates deep white matter and peri-ventricular areas of a MR scan
into four possible categories each depending on the size, location and
confluence of lesions. The combination of both deep white matter and
peri-ventricular ratings yields a combined zero to six scale. In the vast
majority of clinical trials and in general clinical practice visual rating
scores are used (such as the Fazekas score). WMHs are very variable in
size, appearance and location, and therefore the categorical nature of
the Fazekas scale has limitations for studying their progression in re-
lation with other clinical parameters. WMH volume has been demon-
strated to correlate with severity of symptoms, progression of disability
and clinical outcome (Bendfeldt et al., 2010; Chard et al., 2002;
Löuvbld et al., 1997). Accordingly, determining WMH volume has been
of interest in clinical research as well as in clinical trials on disease-
modifying drugs (Löuvbld et al., 1997; van Gijn, 1998; Brott et al.,
1989; SPIRIT, 1997). For some studies, lesions have been traced
manually (sometimes with the help of semi-automated tools for contour
detection) slice by slice. This process can easily become prohibitively
expensive for even moderately large datasets. It is therefore obvious
that the accurate automatic quantification of WMH volume would be
highly desirable, as this will undoubtedly lead to savings in both time
and cost. Recently, several automated and semi-automated methods
have been put forward to address the coarseness of the visual assess-
ments (e.g. Fazekas score), as well as the dependence on highly quali-
fied experts to perform such assessments. These methods can be broadly
classified into supervised, when a training “gold-standard” is available
(Van Nguyen et al., 2015; Ghafoorian et al., 2016), i.e. when one or
more human experts have annotated data, unsupervised, when no such
gold-standard exists (Ye et al., 2013; Cardoso et al., 2015; Bowles et al.,
2016), and semi-supervised, when only a small portion of available data
has been expertly annotated (Kawata et al., 2010; Qin et al., 2016).
However, despite the number of proposed methods, no automated so-
lution is currently widely used in clinical practice and only a few of
them are publicly available (Shiee et al., 2010a; Damangir et al., 2012;
Schmidt et al., 2012). This is partly because lesion load, as defined in
most previously proposed automatic WMH segmentation algorithms,
does not take into account the contribution of strokes lesion, as these
methods are generally unable to differentiate between these two types
of lesions.

1.2. Related work

In the following we review existing methods and challenges that are
related to our work, especially on Multiple sclerosis (MS), WMH and
stroke lesion segmentation in MR imaging. Additionally, some more
general CNN segmentation approaches that share architectural simila-
rities with the method we propose here are also reviewed in this sec-
tion. Over the last few years, there has been an increased amount of
research going on in these areas (García-Lorenzo et al., 2013; Caligiuri
et al., 2015; Maier et al., 2017; Rekik et al., 2012). Although some of
the methods mentioned here were proposed for segmenting different
pathologies rather than the ones we explore in this work, they can in
fact be applied to different tasks. As mentioned before, these methods
can be broadly classified into unsupervised, semi-automatic, semi-su-
pervised and supervised, depending on the amount of expertly annotated
data available.

1.2.1. Unsupervised segmentation
Unsupervised segmentation methods do not require labeled data to

perform the segmentation. Most of these approaches employ clustering
methods based on intensity information or some anatomical knowledge
to group similar voxels into clusters, such as fuzzy C-means methods
(Gibson et al., 2010), EM-based algorithms (Dugas-Phocion et al., 2004;
Forbes et al., 2010; Kikinis et al., 1999) and Gaussian mixture models
(Freifeld et al., 2009; Khayati et al., 2008). Some of the probabilistic
generative models of the lesion formation for stroke lesion segmenta-
tion were also designed, such as Forbes et al. (2010); Derntl et al.
(2015). Forbes et al. (2010) proposed a Bayesian multi-sequence
Markov model for fusing multiple MR sequences to robustly and ac-
curately segment brain lesions. Derntl et al. (2015) proposed to com-
bine standard atlas-based segmentation with a stroke lesion occurrence
atlas, in a patient-specific iterative procedure. Some authors have also
proposed to model lesions as outliers to normal tissues. Van Leemput
et al. (2001) employed a weighted EM framework in which voxels far
from the model were weighted less in the estimation and considered
potential lesions. Weiss et al. (2013) proposed to use dictionary
learning to learn a sparse representation from pathology free brain T1-
weighted MR scans and then applied this dictionary to sparsely re-
construct brain MR images that contain pathologies, where the lesions
were identified using the reconstruction error. Additionally, several
works have also focused on exploiting the fact that WMHs are best
observed in FLAIR MR images, while being difficult to identify in T1-
weighted MR images. Some of these methods rely on generating a
synthetic FLAIR image based on observed T1-weighted MR image using
random forests (Ye et al., 2013), generative mixture-models (Cardoso
et al., 2015), support vector regression (SVR) (Bowles et al., 2016) or
convolutional neural networks (CNN) (Van Nguyen et al., 2015). Both
synthetic (healthy looking) and real FLAIR (with pathologies) images
are then compared to detect any abnormalities. Other method like le-
sion-TOADS (Shiee et al., 2010b) combines atlas segmentation with
statistical intensity modeling to simultaneously segment major brain
structures as well as lesions. The lesion growth algorithm (LGA), pro-
posed by Schmidt et al. (2012) and part of SPM's LST toolbox (www.
statistical-modelling.de/lst.html), constructs a conservative lesion be-
lief map with a pre-chosen threshold (κ), followed by the initial map
being grown along voxels that appear hyperintense in the FLAIR image.
In essence, LGA is a self-seeded algorithm and it tends to have diffi-
culties detecting subtle WMHs. An important drawback of all these
methods is that they are in fact abnormality detection algorithms and
not specifically WMH segmentation methods, hence in principle they
detect any pathology, whether or not is a WMH-related pathology.

1.2.2. Semi-automatic and semi-supervised segmentation
Several semi-automatic algorithms proposed in the literature for

WMH segmentation rely on region growing techniques that require
initial seed points to be placed by an operator. Kawata et al. (2010)
introduced a region growing method for adaptive selection of seg-
mentation by using a SVM with image features extracted from initially
identified WMH candidates. Itti et al. (2001) proposed another region
growing algorithm that extracts WMHs by propagating seed points into
neighboring voxels whose intensity is above an optimized threshold.
The process iterates until convergence, i.e. all voxels above the
threshold that are connected to the initial seed point had been anno-
tated. Aside from the drawback of requiring per image expert inputs,
semi-automatic methods have the additional potential drawback that
seeds points could easily be selected in obvious regions, while the
biggest challenge of WMH segmentation can arguably be found in the
more confusing border regions. Qin et al. (2016) proposed a semi-su-
pervised algorithm that optimizes a kernel based max-margin objective
function which aims to maximize the margin averaged over inliers and
outliers while exploiting a limited amount of available labeled data.
Although theoretically interesting and well motivated, the problem of
transferring useful knowledge from unlabeled data to a task defined by
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