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Background and objective: Epilepsy is associated with alterations in the structural framework of the cerebral net-
work. The aim of this study was to measure the potential of global metrics of network architecture derived from
resting state functional MRI to capture the impact of epilepsy on the developing brain.
Methods: Pediatric patients were retrospectively identifiedwith: 1. Focal epilepsy; 2. BrainMRI at 3 Tesla, includ-
ing resting state functional MRI; 3. Full scale IQ measured by a pediatric neuropsychologist. The cerebral cortex
was parcellated into approximately 700 gray matter network nodes. The strength of a connection between
two nodeswas defined as the correlation between their resting BOLD signal time series. The following global net-
work metrics were then calculated: clustering coefficient, transitivity, modularity, path length, and global effi-
ciency. Epilepsy duration was used as an index for the cumulative impact of epilepsy on the brain.
Results: 45 patients met criteria (age: 4–19 years). After accounting for age of epilepsy onset, epilepsy duration
was inversely related to IQ (p: 0.01). Epilepsy duration predicted by a machine learning algorithm on the basis
of the five global network metrics was highly correlated with actual epilepsy duration (r: 0.95; p: 0.0001). Spe-
cifically, modularity and to a lesser extent path length and global efficiency were independently associated with
epilepsy duration.
Conclusions: We observed that a machine learning algorithm accurately predicted epilepsy duration based on
globalmetrics of network architecture derived from resting state fMRI. These findings suggest that networkmet-
rics have the potential to form the basis for statistical models that translate quantitative imaging data into pa-
tient-level markers of cognitive deterioration.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Epilepsy has a substantial influence on the development and main-
tenance of cognitive functions. Although it is not clear whether such ef-
fects are mediated by ongoing seizure activity, anti-seizure medication
or both, long-term epilepsy and poor seizure control have been consis-
tently associated with poor cognitive outcomes (Elger et al., 2004;
Hermann et al., 2002; Czochanska et al., 1994). These effects on intellec-
tual function are exaggerated in children,whichmay reflect the fact that
developmental physiology is primed to prioritize cerebral growth and
reorganization (Bjornaes et al., 2001). While together these observa-
tions suggest that neural plasticity acts as a negative prognostic factor
in children with epilepsy, these same characteristics likely contribute
to their capacity for cognitive and neurologic recovery after successful

epilepsy surgery (Spencer and Huh, 2008; Freitag and Tuxhorn, 2005).
Despite the benefits of early intervention, however, surgery is frequent-
ly deferred, especially in imperfect candidates or in patients whose sei-
zures have yet to meet the standard for intractability. Early markers of
cognitive deterioration in these childrenwould be of great value toward
defining the optimal timing of surgical intervention.

As a result of advances in computational neuroscience, network or-
ganization of the brain is now accessible to systematic study. Although
the field capitalizes on diverse techniques, one prominent approach le-
verages graph theory to characterize global topological features of the
cerebral network (Hagmann et al., 2008). In this context, the brain is
represented as a collection of nodes, or anatomical elements in the net-
work, and their mutual connections as edges (Bullmore and Sporns,
2009; Guye et al., 2010; Xia andHe, 2011). Graph theory-based analyses
of networks constructed from functional imaging data have demon-
strated that focal epilepsies are associated with global alterations in
the cerebral network (Liao et al., 2010; Bernhardt et al., 2011;
Vlooswijk et al., 2011; DeSalvo et al., 2014; Vaessen et al., 2013). More
recently, it was observed that inter-individual differences in network ef-
ficiency, as quantified by graph theory, correlatewith cognitive function
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in healthy populations of adults and children (Kim et al., 2016; Li et al.,
2009; van den Heuvel et al., 2009). Together, these findings support the
potential for topological features of the brain to providemarkers of cog-
nitive function in children. However, at any given time, the cognitive
abilities of a childwith epilepsywill reflect the intersection of his/her in-
dividual trajectory of brain development with maladaptive changes re-
lated to the cumulative impact of his/her disease. As yet, no data exist
regarding the potential for network analyses to dissociate these pro-
cesses to specifically capture those alterations that relate to epilepsy
and its treatment.

The aim of this studywas tomeasure the potential of global network
metrics derived from resting state functional brain networks to capture
the impact of epilepsy on the developing brain. Although there is no
gold standard to measure these effects, the duration of a patient's dis-
ease has been shown to be a meaningful marker of the cumulative bur-
den of epilepsy, particularly with regard to cognitive function (van
Iterson et al., 2014).We therefore used theduration of each patient's ep-
ilepsy as an index for the overall impact of their disease on the brain.

2. Material and methods

2.1. Study population

This HIPAA-compliant, retrospective study was approved by the
local institutional review board. Written informed consent was waived.
Consecutive patients were identified from the medical record with the
following inclusion criteria: 1. Pediatric age (less-than-or-equal-to
21 years), 2. a clinical diagnosis of focal epilepsy (Berg et al., 2010) by
a pediatric epileptologist based on clinical history and seizure semiolo-
gy, 3. available 3 TeslaMRI of the brain, including a resting state fMRI se-
quence, 4. Full scale intelligence quotient (IQ) according to an age-
appropriate version of the Wechsler Intelligence Test administered by
a pediatric neuropsychologist within 3 months of theMRI. Refinements
to the above-defined population were planned based on the following
exclusions: 1. prior brain surgery.

2.2. Neuropsychological assessment

Intelligence tests were performed by a single pediatric neuropsy-
chologist (MC) withmore than 25 year experience using an age-appro-
priate Wechsler Intelligence Scale test. In each patient, full scale IQ was
determined by evaluation of 4 cognitive domains including verbal com-
prehension, perceptual/fluid reasoning, working memory, and process-
ing speed.

2.3. MR imaging

All imaging was performed on a 3 Tesla magnet (Philips, Achieva
Platform, Andover, Massachusetts) equipped with a 32-channel phased
array head coil. For structural imaging, a T1-weighted, axial three-di-
mensional volume acquisition fast field echo was obtained with TR/
TE: 7.2/2.9 ms, flip angle: 7°, inversion time: 1100 ms, voxel size:
0.9 × 0.9 × 0.9 mm3. Functional MRI data were acquired in the resting
state using a single-shot echo planar acquisition depicting blood oxy-
genation level dependent contrast with TR/TE: 2000/30 ms, flip angle:
80°, voxel size: 3 × 3 × 3.75 mm3. Functional imaging was performed
for 10 min, resulting in 300 volumes for each patient. Patients were
instructed to lie quietly in the scanner with their eyes closed. All images
were visually inspected for artifacts, including susceptibility and subject
motion.

2.4. Image processing and analysis

2.4.1. Network node definition
Nodes in the network were defined for each patient according to

parcellation of whole-brain gray matter on the structural images. The

processing pipeline was implemented using MATLAB scripts (version
7.13, MathWorks, Inc.) in which adapter functions were embedded to
execute FreeSurfer reconstruction (version 5.3.0; http://surfer.nmr.
mgh.harvard.edu) and several FMRIB Software Library (FSL) suite
tools (Smith et al., 2004). First, FreeSurfer reconstruction of cerebral cor-
tical surfaces was performed on the T1 structural image. This processing
stream includes motion correction, skull stripping, intensity normaliza-
tion, segmentation of white matter and gray matter structures,
parcellation of the gray matter and white matter boundary, and surface
deformation following intensity gradients which optimally place the
gray matter/white matter and gray matter/cerebrospinal fluid borders
(Fischl et al., 2001; Fischl et al., 2004). The pial and gray white surfaces
were visually inspected using the Freeview software for accurate
placement.

Next, a self-developed MATLAB program was applied to the
FreeSurfer output to further subdivide the 75 standard graymatter par-
cels according to their surface area. During this process, each parcel was
iteratively divided into two new parcels of equal size until the surface
area of each parcel (as defined on the FreeSurfer gray-white surface
mesh) was less than a 350-mm2-threshold value. Each surface parcel
was then converted into a volume mask of gray matter at that region
to form a node on the network. The number of nodes in each patient's
network ranged from 511 to 841 (mean: 684; standard deviation: 68).

2.4.2. Network edge definition
The first 5 volumes in each resting state functional data were re-

moved to allow magnetization to reach equilibrium. Preprocessing
and independent component analysis (ICA) of the functional data sets
was performed using FSL MELODIC (Smith et al., 2004), consisting of
motion correction, interleaved slice timing correction, brain extraction,
spatial smoothingwith a Gaussian kernel full width at half maximumof
5 mm, and high pass temporal filtering equivalent to 100 s (0.01 Hz).
Noise related to motion and other physiologic nuisance was addressed
according to an ICA technique (Thomas et al., 2002). All non-signal com-
ponents were removedmanually by an expert operator. Motion param-
etersmeasuredduringpreprocessingwere summarized for each patient
as “translation” (the root mean square of the three translational param-
eters) and “rotation” (rootmean square of three rotational parameters).
FSL's FLIRTwas then used to align the functional image volumes for each
patient to that individual's structural T1 dataset using linear registra-
tion. Mean BOLD-signal time series were computed for each node. The
strength of an edge between two nodes was defined as the absolute
value of the Pearson correlation coefficient between their time series.

2.4.3. Construction of the brain functional network
Weighted, undirected graphs were constructed for each patient

consisting of the pair-wise correlation between BOLD signal time series
over all network nodes. Non-significant correlations were excluded

Table 1
Characteristics of the patient cohort.

Patient characteristics

Sample size 45 patients
Gender 26 males; 19 females
Age Mean (SD): 12.1 (4.7) years
Age at epilepsy onset Mean (SD): 5.1 (4.1) years
Duration of epilepsy Mean (SD): 7.1 (5.3) years
Findings at MRI Focal cortical dysplasia 14

Mesial temporal sclerosis 7
Low-grade tumor 5
Hypothalamic hamartoma 4
Tuberous sclerosis complex 3
Sturge-Weber syndrome 2
Subependymal gray matter heterotopia 1
Cavernous malformation 1
Hypoxic ischemic injury 1
Rasmussen's encephalitis 1
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