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ARTICLE INFO ABSTRACT
Am'Cl_e history: Although cerebral edema is a major cause of death and deterioration following hemispheric stroke, there remains
Received 24 June 2016 no validated biomarker that captures the full spectrum of this critical complication. We recently demonstrated
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that reduction in intracranial cerebrospinal fluid (CSF) volume (ACSF) on serial computed tomography (CT)
scans provides an accurate measure of cerebral edema severity, which may aid in early triaging of stroke patients
for craniectomy. However, application of such a volumetric approach would be too cumbersome to perform man-
ually on serial scans in a real-world setting. We developed and validated an automated technique for CSF seg-
mentation via integration of random forest (RF) based machine learning with geodesic active contour (GAC)
segmentation. The proposed RF + GAC approach was compared to conventional Hounsfield Unit (HU)
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CSF segmentation thresholding and RF segmentation methods using Dice similarity coefficient (DSC) and the correlation of volu-
Ischemic stroke CT metric measurements, with manual delineation serving as the ground truth. CSF spaces were outlined on scans
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performed at baseline (<6 h after stroke onset) and early follow-up (FU) (closest to 24 h) in 38 acute ischemic
stroke patients. RF performed significantly better than optimized HU thresholding (p < 10~# in baseline and
p <10~ in FU) and RF + GAC performed significantly better than RF (p < 10~ in baseline and p < 1077 in
FU). Pearson correlation coefficients between the automatically detected ACSF and the ground truth were r =
0.178 (p = 0.285),r = 0.876 (p<10~°) and r = 0.879 (p < 10~ °) for thresholding, RF and RF + GAC, respective-
ly, with a slope closer to the line of identity in RF + GAC. When we applied the algorithm trained from images of
one stroke center to segment CTs from another center, similar findings held. In conclusion, we have developed
and validated an accurate automated approach to segment CSF and calculate its shifts on serial CT scans. This al-
gorithm will allow us to efficiently and accurately measure the evolution of cerebral edema in future studies in-

cluding large multi-site patient populations.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Random forest

1. Introduction 1999, 2000). Under the Monro-Kellie doctrine, compensation for this

swelling must occur given the rigid confines of the cranium, with paral-

Cerebral edema, the pathologic accumulation of excess water inside
brain tissue, is a major cause of death and deterioration following ische-
mic stroke and other brain injuries (Krieger et al., 1999; Rosenberg,
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lel reductions in the volume of other intracranial compartments such as
blood and cerebrospinal fluid (CSF). If cerebral edema progresses be-
yond the point where compensation has been exhausted, then intracra-
nial compartmental pressure will rise, leading to brain herniation
(Hacke et al., 1996). By opening the cranial vault (hence bypassing the
restrictions of the Monro-Kellie doctrine), decompressive
hemicraniectomy (DHC) is effective in preventing herniation and
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death in patients with malignant cerebral edema after large hemispher-
ic infarction (LHI) (Vahedi et al., 2007). This benefit requires early selec-
tion of patients with malignant edema for DHC, ideally prior to
development of herniation and within 48 h. Current approaches to sur-
gical triage require high stroke severity coupled with large infarct seen
either on delayed CT images or acute MRI (Thomalla et al.,, 2010). How-
ever, neither NIHSS nor infarct volume is a direct measure of cerebral
edema, leading to misclassification of patients for an invasive neurosur-
gical procedure or delayed diagnosis until herniation occurs.

We have recently proposed that measuring reduction in CSF volume
can provide a more direct and sensitive biomarker of edema. This can be
accurately measured after volumetric segmentation of CSF from serial
CT scans acquired at baseline and follow-up (FU) in patients with hemi-
sphericinfarction (Dhar et al,, 2016). This CT-based approach may allow
early and accurate identification of those at risk for developing malig-
nant cerebral edema. However, manual segmentation of hemispheric
CSF on two or more CT scans is time-consuming and impractical to
apply to widespread rapid stroke triage decision-making,. It is also im-
possible for manual delineation to analyze the large datasets from
multi-center stroke cohorts required to study the kinetics, predictive
factors and genetic underpinnings of cerebral edema formation. Simple
threshold-based approaches (as have been used to segment CSF on
baseline stroke scans) may not accurately delineate CSF on FU CT
scans where hypodense evolving infarct is hard to distinguish from sur-
rounding CSF (Minnerup et al.,, 2011). The objective of this study was to
develop an automated advanced CSF segmentation approach that is able
to accurately quantify CSF volumetric changes from serial CT scans in
the acute phase of ischemic stroke.

2. Materials and methods
2.1. Patients

We retrospectively identified patients with hemispheric infarction
and cerebral edema of varying degrees from a stroke cohort enrolled
in a prospective stroke study at two institutions. Eligibility criteria in-
cluded: 1) baseline NIHSS >8; 2) baseline head CT obtained within 6 h
of stroke onset; 3) FU CT obtained at 6-48 h after stroke onset; 4) FU
CT confirming hemispheric infarction and some degree of edema (i.e.,
sulcal and/or ventricular effacement with or without midline shift,
MLS); 5) no parenchymal hematoma on FU CT. If more than one FU CT
was performed, the scan closest to 24-hours was selected for analysis,
as long as it was performed prior to any decompressive surgery. We
have included 38 patients with hemispheric infarction, with 26 patients
from Washington University/Barnes-Jewish Hospital, St. Louis, MO
(center A) and 12 patients from Vall d'Hebron Hospital, Barcelona,
Spain (center B). All subjects (or their proxy) provided informed con-
sent and the study was approved by institutional review boards at

Table 1
Demographic and clinical characteristics of the study population.

Variable/center Washington University, St.  Vall d'Hebron,

Louis Barcelona
Number of subjects 26 12
Age, years 61 (52-80) 74 (56-82)
Gender, female 11 (42%) 5 (42%)
Race, white 18 (69%) 12 (100%)
Admission NIHSS 15 (10-19) 17 (11=21)
Treated with tPA 21 (81%) 12 (100%)
ASPECTS on baseline CT 9(8-10) 9(8-10)
Time between baseline and FU, 18 (13-34) 24 (18-27)

hours

Midline shift, ml* 0(0-24) 0.5 (0-1.4)

Notes. Categorical variables are present as n (%); continuous variables are presented as
medians (interquartile range).
2 Infarct volume and midline shift were assessed as visible on early FU CT scans.

each center. Demographic and clinical characteristics of the study pop-
ulation are given in Table 1.

2.2. Manual delineation

CSF was outlined using the MIPAV (Medical Image Processing, Anal-
ysis, and Visualization) software package, as has been previously de-
scribed (Dhar et al, 2016). CSF volume was segregated into
compartments including hemispheric sulci and lateral ventricles, both
ipsilateral (IL) and contralateral (CL) to the side of infarction. The
third ventricle and the perimesencephalic and suprasellar cisterns
were also outlined and included in total CSF volume. Total hemispheric
CSF volume was quantified on each CT scan as the sum of all CSF spaces
and change in volume (ACSF) was calculated as the reduction in volume
between these two scans (i.e., FU vs. baseline volume). Two raters sep-
arately segmented CSF on a subset of scans and inter-rater reliability for
manual volumetric segmentation of CSF was found to be 0.92. Manual
CSF delineation was saved as image masks for comparison with auto-
mated segmentation.

2.3. Pseudo-affine image registration

CT images consist of stacks of axial images with a thick slice separa-
tion of 5 mm. In order to align CTs from different patients (with different
orientation and head size) to a normalized frame to reduce geometrical
variability, we adopted a pseudo affine registration to co-register all the
CT images to a pre-chosen well-positioned template. In the affine trans-
formation matrix, we restricted shears and rotations involving the foot
to head direction, so that a 2D image slice remains a plane after transfor-
mation. This warping process only allows 3D translation, in-plane rota-
tion, scaling and shear. Following this registration step, the ground truth
(i.e. manual) CSF segmentation masks were also transformed towards
the template with the same transformation matrix. Besides making
the sulci more consistently oriented, this warping process also allowed
us to perform training of one random forest in this template frame for
future deployment.

2.4. Random forest CSF classification

Our training-based CSF segmentation is a supervised learning pro-
cess. Random forests (RF) (Breiman, 2001) has recently been applied
to medical image segmentation with promising results (Geremia et al.,
2011; Mitra et al., 2014). This hierarchical approach learns how to effi-
ciently classify brain voxels by creating a large forest of multiple inde-
pendent decision-trees derived from random subsets of the sample of
CT scans provided (e.g. sets 1 through N, in Fig. 1A). Initially, all samples
inasubset (e.g. set 1in Fig. 1A) are pushed down from the root node of a
tree to either the left or right branches (subsets S1 and S2) depending
upon which route will achieve more ordered organization. Data is suc-
cessively partitioned to optimize discrimination or until: 1) maximal
tree depth is reached; 2) the minimal number of samples being divided
is reached; or 3) all samples belong to the same class. RF then leverages
this cluster of derived models to optimally segment each voxel (i.e. into
CSF or other). To optimize classification, the Gini impurity index is re-
duced through the splitting process. The calculation of this index is
given in Eq. (1), with py as the fraction of items labeled with value k
and the total cluster number K. Gini impurity is a measure of how
often an element is incorrectly labeled and it reaches zero when all
the cases within a node all belong to a single class.

Gini = XX 1 p(1—py) M

At each node split, the sum of Gini impurity from the two descen-
dent nodes is less than the parent node. Finally, random forest takes ad-
vantage of the concept of ensemble by training multiple trees with the
repeated sampling of the training set. As a result, this supervised
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