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The Corpus Callosum (CC) is an important structure connecting the two brain hemispheres. As several neurode-
generative diseases are known to alter its shape, it is an interesting structure to assess as biomarker. Yet, current-
ly, the CC-segmentation is often performed manually and is consequently an error prone and time-demanding
procedure. In this paper, we present an accurate and automated method for corpus callosum segmentation
based on T1-weighted MRI images.
After the initial construction of a CC atlas based on healthy controls, a new image is subjected to a mid-sagittal
plane (MSP) detection algorithm and a 3D affine registration in order to initialise the CC within the extracted
MSP. Next, an active shape model is run to extract the CC. We calculated the reliability of most popular CC fea-
tures (area, circularity, corpus callosum index and thickness profile) in healthy controls, Alzheimer's Disease
patients and Multiple Sclerosis patients. Importantly, we also provide inter-scanner reliability estimates.
We obtained an intra-class correlation coefficient (ICC) of over 0.95 for most features and most datasets. The
inter-scanner reliability assessed on the MS patients was remarkably well and ranged from 0.77 to 0.97.
In summary, we have constructed an algorithm that reliably detects the CCin 3D T1 images in a fully automated
way in healthy controls and different neurodegenerative diseases. Although the CC area and the circularity are
the most reliable features (ICC> 0.97); the reliability of the thickness profile (ICC> 0.90; excluding the tip) is suf-
ficient to warrant its inclusion in future clinical studies.

© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

width - especially in the splenium - was found when compared to
healthy controls. In contrast to these findings, some studies have also

The Corpus Callosum (CC) is the most important fibre bundle relay-
ing information between homologous cortical areas. The mid-sagittal
CC Area (CCA) is considered an indicator of the number of small-diam-
eter fibres involved in higher order cognitive functions [Aboitiz, 1992]
and a larger CCA has been hypothesized to reflect improved interhemi-
spheric communication [Luders et al., 2007]. Consequently, several
studies have found a positive correlation between CCA and intelligence
scores [Luders et al., 2007; Luders et al., 2009; Park et al., 2008]. These
findings were further corroborated by a post-mortem study of Albert
Einstein's brain [Men et al., 2014], in which a significant increase in
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shown a negative correlation between CCA and intelligence [Ganjavi
etal, 2011].

Alterations to the CC morphometry have been shown to be present
in different (neurodegenerative) pathologies. An increased CC Area
(CCA) was observed in children affected with Autism Spectrum Disor-
der [Wolff et al., 2015] and smaller CCAs were found in Schizophrenia
patients [Bachmann et al., 2003; Rotarska-Jagiela et al., 2008]. Regional
CC atrophy was observed in patients affected by Alzheimer's disease
[Frederiksen et al., 2011; Hallam et al., 2008; Di Paola et al., 2010], in pa-
tients with Huntington's dementia [Di Paola et al., 2012; Rosas et al.,
2010], in a sample of patients with mesial temporal lobe epilepsy
[Schneider et al., 2014] and in patients with bipolar disorder [Sarrazi
etal, 2015].

In Multiple Sclerosis, a neuro-inflammatory disease with a neurode-
generative component, correlations have been established between the
Corpus Callosum Area (CCA) and the Expanded Disability Status Scale
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(assessing physical handicap) and the Symbol Digit Modalities Test
(assessing information processing speed) [Granberg et al., 2015]. In ad-
dition - in the same study - the CCA outperformed whole-brain, lesion,
white and grey matter volume in discriminating between healthy con-
trols (HC) and MS patients. Finally, CC atrophy during the first year of
treatment was found to be the best predictor (comparing to T1 and T2
lesion volumes and, brain parenchymal fraction and atrophy) of disabil-
ity and its increase in a large and long-running (9 years) follow-up
study [Vaneckova et al., 2012].

Due to the increasing interest in analysing the regional influence of
different (neurodegenerative) pathologies on the CC, recent research
has included the corpus callosum thickness profile as an important fea-
ture [Walterfang et al., 2009]; e.g. a recent study found that the regional
thickness could predict the conversion from mild cognitive impairment
to Alzheimer's disease [Lee et al., 2016].

Although most thickness profile generation methods rely on the or-
thogonal projection outward from a midline [Adamson et al., 2011],
overlap between adjacent streamlines may lead to biased results inflat-
ing the thickness in more curved CC. As presented in [Adamson et al.,
2014, the use of a continuous thickness calculation based on an artifi-
cial Laplacian field bypasses this limitation. Furthermore, it provides a
biologically plausible model as the resulting thickness profiles are simi-
lar to the underlying organisation of the connections from the CC
[Adamson et al., 2011; Hofer and Frahm, 2006] and omits the need of
subdividing the CC using different partition schemes [Luders et al.,
2007] (e.g. the Witelson partition [Witelson, 1989]).

Several strategies have been developed to segment the mid-sagittal
plane (MSP) CC from T1-weighted magnetic resonance images. These
strategies can be roughly divided into three categories [Herron et al.,
2012]: a first set of methods is based on whole-brain registration to
one (or multiple) common space(s) [Adamson et al., 2014; Ardekani
et al,, 2005; Chaim et al.,, 2007; Wang et al., 2009]. While the main ad-
vantage of these methods is that the CC does not need to be delineated
in individual images (but only on the template), these methods lack the
flexibility to capture the large inter individual differences in CC shape
and require manual intervention in up to 20% of the cases [Adamson
et al., 2011; Ardekani et al., 2014; Wang et al., 2009]. Furthermore, the
robustness of more advanced deformation-based techniques is not
clear [Herron et al., 2012], especially with respect to neurodegenerative
diseases.

A second strategy relies on pre-defined rules. However, these
methods seem to be vulnerable to segmentation errors (e.g. the fornix
and pericallosal arteries [Herron et al., 2012]) and may not be suitable
to segment the CC in various neurodegenerative diseases.

As we expected that neither deformation-based techniques,
neither rule-based techniques could be reliably applied to the seg-
mentation of the CC in patients affected by neurodegenerative dis-
eases, we developed a method that belongs to the boundary based
methods, that rely on a set of manually delineated CCs that are fed
into an active shape model. As such, the variations observed in the
training set limit the shape variations allowed in test-images.
While the main disadvantage of these boundary-based methods
seems to be the necessity to develop specific training sets for every
(neurodegenerative) population, we aim at assessing to what extent
this disadvantage is justified.

In this paper, we provide accuracy (comparison to manual segmen-
tations), repeatability (subject stayed within the scanner) and repro-
ducibility (patient was repositioned for a new scan) estimates for the
most commonly used CC features (area, circularity, corpus callosum
index [Figueira et al., 2007]) and the thickness profile calculated using
Laplace's equation, both in healthy controls and in two neurodegenera-
tive populations. Our aim is to provide an insight into the reliability of
the different CC features and to assess whether the thickness profile —
which can be easily calculated and provides more detailed information
than the commonly used CC features - can be as reliably extracted as
more robust features like the CC area.

2. Methods
2.1. Datasets

2.1.1. Dataset 1. Healthy controls and Alzheimer's patients from the OASIS
database

The OASIS database consists of 416 subjects aged between 18 and
96 years old. For each subject, 3 or 4 individual T1-weighted MRI
scans obtained in single-scan sessions were included. The scans were
acquired on a 1.5-T Vision scanner (Siemens). All subjects are right-
handed and female. Out of the 416 scanned subjects, 100 have been
clinically diagnosed with very mild to mild Alzheimer's disease (AD) ac-
cording to the Clinical Dementia Rating [Marcus et al., 2007; Morris et
al., 2001]. Additionally, a reliability dataset of 20 non-demented subjects
imaged on a subsequent visit within 90 days of their initial session was
provided (oasis-brains.org). For more information, cf. [Marcus et al.,
2007].

From the OASIS database we applied the algorithm to the 216
healthy controls that were not used for training and 100 patients affect-
ed by very mild to mild Alzheimer's Disease. For these patients, 3 to 4
scans are available. Rather than averaging the different scans to increase
the signal-to-noise ratio, we processed the different scans independent-
ly. This allowed us to assess the repeatability of our algorithm. The 216
healthy controls are referred to as “OASIS_HC”, the 100 AD patients as
“OASIS_AD”.

Furthermore, 20 non-demented subjects had been scanned twice
within 90 days. These patients are denoted as “OASIS_HC_TRT".

2.1.2. Dataset 2. Multiple sclerosis patients

Ten MS patients participated in a study at University Hospital UZ
Brussel, Brussels, Belgium. The study was approved by the local ethics
committee and all patients signed informed consent forms. MR imaging
was performed for each patient twice on 3 3T whole body scanners from
3 different manufacturers (GE Medical Systems Discovery MR750 MW,
SIEMENS Skyra, Philips Medical Systems Achieva). The patient was
re-positioned between the first and the second scan. The GE scanner
protocol contained, among others, a 3D T1-weighted FSPGR sequence
(TR 7.32 ms, TE: 3.144 ms, FA 12°, 220 x 220 mm? FOV, 328 sagittal
slices, 0.4297 x 0.4297 x 0.5 mm? voxel resolution). The SIEMENS
scanner protocol contained a 3D-T1-weighted MPRAGE sequence (TR:
2300 ms, TE: 2.29 ms, FA 8°, 240 x 240 mm? FOV, 176 sagittal slices,
0.9375 x 0.935 x 0.94 mm?> voxel resolution) and the PHILIPS scanner
protocol contained a 3D T1-weighted FPSR sequence (TR 4.936 ms, FA
8°, 230 x 230 mm? FOV, 310 sagittal slices, 0.5324 x 0.5324 x 0.5 mm?>
voxel resolution).

2.2. Construction of a CC training atlas

The training set consisted of 100 images from the OASIS dataset for
which the corpora callosa were manually delineated on their respective
Mid Sagittal Planes (MSPs). Next, a minimum description length algo-
rithm was applied in order to solve the point correspondence problem
(i.e. ensuring maximal correspondence between the n'th point on the
CC boundary among the different images) [Thodberg, 2003]. The sub-
jects used in this step are excluded from the analysis in which repeat-
ability of the different CC features is assessed.

As a CC shape consisted of >3000 edge points, that - in theory -
could all move independently, a principal component analysis on
these shapes was performed to retain 99% of the observed variance in
the constructed atlas (corresponding to 16 principal components). The
shape variations along the first 3 principal components are depicted in
Fig. S1. Once a new image is entered in the pipeline, these 16 principal
components will ensure a regularisation on the possible shapes and
will ensure that the fornix is not included in the segmentation.

This way, we have constructed a training atlas (cf. Fig. 1) containing
the average shape and the principal components of the shape variations
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