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A B S T R A C T

Objectives: Heterogeneity of head and neck squamous cell carcinomas (HNSCCs) results in unpredictable out-
comes for patients with similar stages of cancer. Beyond the role of human papilloma virus (HPV), no validated
molecular marker of HNSCCs has been established. Thus, clinically relevant molecular subtypes are needed to
optimize HNSCC therapy. The purpose of this study was to identify subtypes of HNSCC that have distinct bio-
logical characteristics associated with clinical outcomes and to characterize genomic alterations that best reflect
the biological and clinical characteristics of each subtype.
Materials and methods: We analyzed gene expression profiling data from pan-SCC tissues including cervical SCC,
esophageal SCC, lung SCC, and HNSCC (n= 1346) to assess the similarities and differences among SCCs and to
identify molecular subtypes of HNSCC associated with prognosis. Subtype-specific gene expression signatures
were identified and used to construct predictive models. The association of the subtypes with prognosis was
validated in two independent cohorts of patients.
Results: Pan-SCC analysis identified three novel subtypes of HNSCC. Subtype 1 had the best prognosis and was
similar to cervical SCC, whereas subtype 3 had the worst prognosis and was similar to lung SCC. Subtype 2 had a
moderate prognosis. The 600-gene signature associated with the three subtypes significantly predicted prognosis
in two independent validation cohorts. These three subtypes also were associated with potential benefit of
immunotherapy.
Conclusion: We identified three clinically relevant HNSCC molecular subtypes. Independent prospective studies
to assess the clinical utility of the subtypes and associated gene signature are warranted.

Introduction

Head and neck squamous cell carcinoma (HNSCC) is usually clas-
sified according to pathological features and location, which are used to
predict prognosis [1]. However, even among tumors with the same
clinical stage and location, some are indolent and progress slowly,
whereas others are aggressive and progress quickly. Traditionally,
clinicopathological features, such as extracapsular nodal spread, posi-
tive margins, multiple positive nodes, or perineural/vascular invasion,
have been used as prognostic factors in HNSCC [2]. But the clinical use
of these factors is limited, especially in patients who undergo

chemotherapy, radiation therapy, or targeted therapy without surgical
treatment.

Genomic analysis has led to the proposal of four molecular subtypes
of HNSCCs—atypical, basal, classical, and mesenchymal—that share
some molecular features with lung squamous cell carcinoma (LSCC)
[3]. Molecular features of these four subtypes include deregulation of
the KEAP1/NFE2L2 oxidative stress pathway, differential utilization of
the lineage markers of SOX2 and TP63, and preference for the onco-
genes PIK3CA and EGFR. However, in contrast to subtypes in LSCC that
effectively reflect patient prognosis [4], these four subtypes are not
associated with prognosis in HNSCC [3], indicating the need to identify
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clinically relevant molecular subtypes of HNSCC.
A large-scale genomic study by The Cancer Genome Atlas (TCGA;

Bethesda, MD) identified molecularly distinct subtypes of several types
of cancer that reflect clinical differences [5–13]. These data have been
used to analyze genomic data from different cancer types to identify
shared genetic features among different cancers [14–17]. In this study,
we analyzed genomic data from four different types of squamous cell
carcinoma (SCC) of different origins (HNSCC, esophageal SCC [ESCC],
LSCC, and cervical SCC [CSCC]) to explore their molecular similarities
and differences. Unexpectedly, we discovered three novel HNSCC sub-
types; two of these subtypes have genomic and molecular character-
istics that are similar to CSCC and LSCC, respectively. Our findings may
provide clinically relevant insights into the molecularly different sub-
types of HNSCC.

Materials and methods

Genomic and clinical datasets

TCGA genomic data of four SCCs (HNSCC, ESCC, LSCC, and CSCC)
were obtained from the data portal (https://tcga-data.nci.nih.gov) and
cancer browser (https://genome-cancer.ucsc.edu). Gene-level expres-
sion data from mRNA-seq (n=1346), copy number variation data
(n=1308), somatic mutation data (n=795), and clinical data
(n=1346) were included in our analyses. Clinical data included sur-
vival data, sex, age, TNM stage, primary sites, HPV status, alcohol and
smoking habits, and margin status (Appendix data 1 and 2). Samples
were classified as HPV-positive using an empiric definition of detection
of> 1000 mapped RNA-Seq reads, primarily aligning to viral genes E6
and E7 [5]. All genomic and clinical data used in this study were data
released in February 2, 2015.

Analysis of the gene expression data and unsupervised clustering

BRB-ArrayTools (http://linus.nci.nih.gov/BRB-ArrayTools.html)
software was used to analyze gene expression data [18]. Consensu-
sClusterPlus (Bioconductor) [19] was used to perform unsupervised
clustering of gene expression data (6856 genes, 2-fold difference in at
least 134 cases relative to the median value across tissues) from 1346
pan-SCC tumors and to find the optimal number of clusters
(Supplementary Fig S1). A heatmap was generated using the Cluster
and TreeView programs [20]. Other statistical analyses were performed
using the R language environment (http://www.r-project.org). To se-
lect genes that were differentially expressed between subtypes, we
performed multiple two-sample t-tests for all possible combinations of
the three subtypes with a stringent significance cutoff of P < 0.001 and
1.5-fold difference. Genes were then ranked according to fold-ratios,
and the top 200 genes were selected for each subtype (Supplementary
Fig S2 and Appendix data 3). Pathway analysis was carried using In-
genuity Pathways Analysis (IPA, Ingenuity, Redwood City, CA, USA).
Genes associated with canonical pathway in the Ingenuity Pathways
Knowledge Base were considered for analysis. The significance of as-
sociation between 200 genes of each group and the canonical pathway
was measured using Fischer’s exact test (P < 0.001)

Prediction models with genomic signatures

The gene expression signature from the TCGA cohort was used to
stratify patients with HNSCC from two validation cohorts from the Gene
Expression Omnibus database: GSE39366 [3] and GSE65858 [21]. Ex-
pression data from 200 subtype-specific genes in the TCGA set were
combined to form a classifier according to a Bayesian compound cov-
ariate predictor (BCCP), as described previously [22–26]. The BCCP
classifier estimated the likelihood of an individual patient being in one
of three subtypes. Briefly, gene expression data for each subtype gene
signature from the TCGA cohort (i.e., the 200 significant genes for each

subtype) were used to generate the Bayesian probability of each tissue
sample belonging to a particular subtype, generating three probability
scores for each tumor. Samples in the validation cohorts were assigned
to one of the three subtypes according to the highest probability scores.
We used equal prior probability option with 0.5 of uncertainty
threshold to decide whether the case was subtype 1 or non-subtype1
(subtype 2 or subtype 3). We also performed this analysis for subtype 2
and subtype 3. As for HPV state assessment in validation cohorts, in situ
hybridization was used in GSE39366 [3] and both HPV16 DNA status
and HPV16 RNA status were detected using analysis of E6 transcripts by
RT-PCR in GSE65858 [21].

The potential response of each patient to immunotherapy was es-
timated by a previously established immune signature score predictor
with 105 gene [27]. The immune signature score ranged from 0 to 1,
and 0.5 was used as the cutoff for potential responders (> 0.5) and non-
responders (< 0.5).

Analysis of copy number alteration and somatic mutation

Multiple two-sample t-tests were performed for all possible combi-
nations of the three subtypes to select subtype-specific genes with copy-
number alterations. Of the 127 most frequently mutated cancer genes in
12 cancer types identified in a previous study [28], the most frequently
mutated genes in HNSCC (21 genes) were selected for analysis. Somatic
mutation data were analyzed and visualized using OncoPrint (https://
cbioportal.org).

Statistical analysis

The association of each subtype with overall survival (OS) and re-
currence-free survival (RFS) in the TCGA cohort and validation cohorts
was assessed by Kaplan-Meier plots and the log-rank test. OS was de-
fined as the time from surgery to death, and RFS was defined as the time
from surgery to the first confirmed recurrence. Data were censored for
patients who were alive without recurrence at the last follow-up. P
values < 0.05 were considered statistically significant.

Results

Analysis of pan-SCC genomic data and novel molecular subtypes of HNSCC

To explore the molecular profiles of SCC, we carried out un-
supervised clustering analysis with mRNA expression data from four
different types of SCC, including HNSCC, ESCC, LSCC, and CSCC
(Appendix data 1). As expected, most tumors were clustered together
according to the origin of the tumors (Fig. 1a). Most CSCCs were in
cluster 1, whereas most HNSCCs were in cluster 2. LSCCs and ESCCs
were in cluster 3 (Fig. 1a and Supplementary Table S1), suggesting
potential similarities in the underlying biology between LSCC and
ESCC. Subsets of each tumor type were grouped with other tumor types.
For example, a subset of CSCCs was clustered with LSCC, whereas a
small subset of LSCC was clustered with HNSCC, indicating molecular
heterogeneity within each tumor type. Interestingly, a substantial
subset of HNSCCs was clustered with either CSCC or LSCC, indicating
that these HNSCCs share more molecular similarity with other tumor
types than most HNSCCs (Supplementary Table S1).

As expected, the clinical outcomes of patients in the three clusters
were significantly different and reflected the different tumor types in
each cluster. LSCC had a typically worse prognosis than other SCCs [29]
(Fig. 1b). Surprisingly, the prognostic significance of the three clusters
remained the same even when only HNSCCs were analyzed (Fig. 1c).
The OS rate of patients with HNSCC in cluster 1 was similar to that of
patients with CSCC, whereas the OS rate of patients with HNSCC in
cluster 3 was similar to that of patients with LSCC. It is important to
point out that the distribution of clinical stages in the three clusters was
not significantly different (Table 1, Appendix data 2), suggesting that
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