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GRAPHICAL ABSTRACT

Background: Natural killer (NK) cells are critical innate
effector cells whose development is dependent on the Janus
kinase–signal transducer and activator of transcription (STAT)
pathway. NK cell deficiency can result in severe or refractory
viral infections. Patients with STAT1 gain-of-function (GOF)
mutations have increased viral susceptibility.
Objective: We sought to investigate NK cell function in patients
with STAT1 GOF mutations.

Methods: NK cell phenotype and function were determined in
16 patients with STAT1 GOF mutations. NK cell lines expressing
patients’ mutations were generated with clustered regularly
interspaced short palindromic repeats (CRISPR-Cas9)–
mediated gene editing. NK cells from patients with STAT1 GOF
mutations were treated in vitro with ruxolitinib.
Results: Peripheral blood NK cells from patients with STAT1
GOF mutations had impaired terminal maturation. Specifically,
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patients with STAT1GOFmutations have immature CD56dim NK
cells with decreased expression of CD16, perforin, CD57, and
impaired cytolytic function. STAT1 phosphorylation was
increased, but STAT5 was aberrantly phosphorylated in response
to IL-2 stimulation. Upstream inhibition of STAT1 signaling with
the small-molecule Janus kinase 1/2 inhibitor ruxolitinib in vitro
and in vivo restored perforin expression in CD56dim NK cells and
partially restored NK cell cytotoxic function.
Conclusions: Properly regulated STAT1 signaling is critical for
NK cell maturation and function. Modulation of increased
STAT1 phosphorylation with ruxolitinib is an important option
for therapeutic intervention in patients with STAT1 GOF
mutations. (J Allergy Clin Immunol 2017;nnn:nnn-nnn.)
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Natural killer (NK) cells account for approximately 10% to
15% of all circulating lymphocytes1 and are important early
effectors in the innate immune response to a variety of viral
infections.2 Within peripheral blood, NK cells comprise 2
phenotypic and functional subsets3: CD56dim NK cells are
considered to be terminally mature and are the primary mediators
of contact-dependent lysis of target cells,1,3 and CD56bright NK
cells contain less mature NK cell subsets and are potent producers
of cytokines.4,5

NK cells are derived from CD341 precursors,3,6 and their
development can be stratified to 5 stages7 characterized by
specific surface receptors and proliferative and functional
capacities.8,9 CD56bright NK cells are the minor subset
(approximately 10%) of NK cells within peripheral blood.5

They are characterized by low expression of perforin and high
expression of CD94-NKG2A receptors,7 and a subset of cells
retain CD117 (c-Kit) expression.7,10 NKG2D, NKp46, CD62
ligand, and detectable CD122 are expressed at high levels.10-14

These cells are sources of cytokines reflected by high levels
of IFN-g and GM-CSF.1,7-10 Functional and phenotypic interme-
diate populations between CD56bright and CD56dim cells have also
been described in healthy donors.9,11,15 NK cell terminal matura-
tion is defined by upregulation of perforin, CD16, CD57, CD8,
and NKp46 and downregulation of CD94.7,11,13,14,16-19 NK cell
development and homeostasis require IL-15,20,21 and in both
mouse and human systems, NK cells do not develop in the
absence of IL-15.22

Classical natural killer deficiency is characterized by the
absence of both NK cells and their cytotoxic function,23-27

whereas functional NK cell deficiency is characterized by normal
frequencies of NK cells in peripheral blood with decreased
function.28,29 There are several immune deficiency diseases that
affect NK cell development, function, or both.29 Patients with
NK cell deficiency have increased susceptibility to viral
infections, including herpesviruses, varicella zoster, herpes
simplex, cytomegalovirus, and human papilloma virus.23-27,30

Severe herpesvirus infection with decreased NK cell natural
cytotoxicity has been reported in patients with loss-of-function
mutations in signal transducer and activator of transcription
(STAT) 131 and recently in 8 patients with STAT1 gain-of-
function (GOF) mutations.32

The STAT family includes 7 members: STAT1 to STAT4,
STAT5a and STATb, and STAT6.33 Activation through
intracellular domains of cytokine receptors, including those for
IFN-a/g, IL-2, IL-4, IL-15, IL-21, and IL-6,34-36 leads to
association with Janus kinase (JAK) family members and
recruitment and phosphorylation of STAT proteins.33,37-40

Phosphorylated STAT (pSTAT) proteins form homodimers or
heterodimers and translocate to the nucleus, where they bind to
consensus sequences in the promoters of target genes.33,41 In
addition to roles in development and homeostasis, STAT proteins
mediate viral defense in NK cells.42 Upon IL-2 stimulation,
pSTAT5 binds 2 enhancers located in the 59 region of the perforin
1 gene (PRF1), promoting its transcription43; upon IL-6 and IL-
12 stimulation, this enhancer is bound by pSTAT1 and pSTAT4,
respectively.44,45 Stat5b knockout mice have significantly lower
levels of perforin expression at baseline and greatly decreased
NK cell cytolytic function.46 In human subjects STAT5b defi-
ciency is associated with abnormal NK cell development causing
susceptibility to severe viral infections in these patients.47

Heterozygous GOF mutations in STAT1 lead to significantly
higher levels of pSTAT1 and increased STAT1 response to type
I and II interferons.48 These mutations are mostly located in the
coiled-coil domain (CCD) or DNA-binding domain (DBD) and
lead to an excess of pSTAT1-driven target gene transcription.48-50

Patients with these mutations can develop recurrent or persistent
chronic mucocutaneous candidiasis (CMC) or other cutaneous
mycosis,48,49 staphylococcal infections, disseminated dimorphic
fungal infections (Coccidioides inmitis andHistoplasma capsula-
tum), viral infections, and autoimmune disease.51-54

Our investigations of patients with unexplained significant
viral susceptibility identified functional NK cell defects in
patients with STAT1 GOF mutations, suggesting that STAT1 is
important for human NK cell differentiation and function. In
this study we describe an immature and poorly functioning
CD56dim NK cell population with low perforin expression and
impaired cytotoxic capacity in patients with STAT1 GOF
mutations. Administration of the specific JAK1/2 inhibitor
ruxolitinib, both in vitro and in vivo, restored perforin expres-
sion in immature CD56dim NK cells and partially restored NK
cell cytotoxic function. Together, these data demonstrate the ef-
fects of ruxolitinib treatment and identify decreased perforin
expression and impaired terminal maturation as contributing
to functional NK cell defects in patients with STAT1 GOF
mutations.
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ADCC: Antibody-dependent cellular cytotoxicity

CCD: Coiled-coil domain

CMC: Chronic mucocutaneous candidiasis

CRISPR: Clustered regularly interspaced short palindromic repeats

DBD: DNA-binding domain

GOF: Gain of function

JAK: Janus kinase
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pSTAT: Phosphorylated STAT

SOCS: Suppressor of cytokine signaling

STAT: Signal transducer and activator of transcription
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