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a b s t r a c t

Limit cycle oscillations (LCOs) are a hallmark of dynamic instability in time-delayed and nonlinear sys-
tems such as climate change models, biological oscillators, and robotics. Here we study the links between
the human neuromuscular system and LCOs in standing posture. First, we demonstrate through a simple
mathematical model that the observation of LCOs in posture is indicative of excessive neuromuscular
time-delay. To test this hypothesis we study LCOs in the postural sway of individuals with multiple
sclerosis and concussed athletes representing two different populations with chronically and acutely
increased neuromuscular time-delays. Using a wavelet analysis method we demonstrate that 67% of
individuals with multiple sclerosis and 44% of individuals with concussion exhibit intermittent LCOs; 8%
of MS-controls, 0% of older adults, and 0% of concussion-controls displayed LCOs. Thus, LCOs are not only
key to understanding postural instability but also may have important applications for the detection of
neuromuscular deficiencies.

& 2016 Published by Elsevier Ltd.

1. Introduction

Limit cycle oscillations (LCOs) are self-sustained periodic
motions that mark the onset of dynamic instability in nonlinear
and time-delayed systems (Insperger and Stépán, 2011). LCOs are
an important focus of nonlinear systems research including phy-
siological control (Mackey and Glass, 1977), chemical reactions
(Epstein, 1992; Epstein and Luo, 1991), aeroelasticity (Dowell,
1975; Holmes, 1977), machining (Porter, 1967; Tobias, 1965),
robotics (Insperger and Stepan, 2000), climate change (Degregorio
et al., 1992), biological oscillators (Batzel and Tran, 2000; Mac-
Donald, 1978), traffic (Orosz et al., 2009), and predator-prey
models (Albrecht et al., 1973; May, 1972; Stepan, 1986). In many
of the systems listed above, the appropriate combination of non-
linearities and time-delays drive the system away from a static
equilibrium, resulting in LCOs.

Nonlinearities and time-delays are also present in sensori-
muscular feedback loops that control upright posture (Winters
and Stark, 1985) raising the question whether and how LCOs might
arise in human postural sway. The presence of LCOs in posture, if
confirmed, would imply a pathological loss in the capacity to
regulate and stabilize upright stance. Thus LCO mechanisms in

human balance could be fundamentally important in the under-
standing of postural instability and provide important insights into
neuromuscular health and rehabilitation.

Previously dynamics of balance has focused on nonlinear ana-
lysis of experimental data and not on specific mechanisms of
instability such as LCOs. Typically, time-dependent measures such
as Lyapunov exponents (Collins and Deluca, 1994; Donker et al.,
2007; Ladislao and Fioretti, 2007; Roerdink et al., 2006; Yamada,
1995), entropy measurements (Cavanaugh et al., 2005; Donker
et al., 2007; Haddad et al., 2011, 2013; Roerdink et al., 2006), and
recurrence quantification (Haddad et al., 2008; Kinsella-Shaw
et al., 2006; Rhea et al., 2011; Schmit et al., 2006) are used to
characterize the dynamics of postural sway. Although these non-
linear methods provide important insights into how postural
adaptability and flexibility change with age and neuromuscular
disease, insights into the mechanisms responsible are not identi-
fied. Additionally, questions about the relationship between
changes in time-dependent measures such as entropy and stability
of upright posture remain unanswered.

Although LCO behavior has been observed in complex models
of postural dynamics that included intermittent controllers (Asai
et al., 2009; Gawthrop et al., 2014; Kowalczyk et al., 2012), smooth
switch controllers (Eurich and Milton, 1996; Yao et al., 2001), or
models that include several muscle groups (Verdaasdonk et al.,
2004) the mechanisms for developing LCOs are clouded by the
complexity of such models. Stepan (2009) demonstrated the
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appearance of LCOs in a simple model of upright balance, however
passive feedback was neglected.

Thus there is a need to understand the mechanisms of LCOs in
simple, yet realistic mathematical models of upright balance
which are commonly used (Peterka, 2002). Moreover LCOs need to
be measured and detected robustly in specific populations with
neuromuscular deficits. In this article we study the onset of LCOs
in upright human posture through a bifurcation analysis of a
commonly used biophysical-mathematical model and a novel
wavelet analysis of experimental posture data of individuals with
multiple sclerosis (MS), athletes with concussions, age-matched
healthy controls, and older adults.

2. Theoretical modeling methods

We first describe the mechanism by which LCOs can arise in a
widely used biophysical-mathematical model of human stance
where such behavior has not previously been observed. Specifi-
cally we adapted the inverted pendulum model from Peterka
(2002) to simulate the anterior-posterior sway angle θ (Fig. 1(a))
where posture is perturbed by external torque Mext and regulated
by corrective ankle torque Mankle:

Ibodyþmbodyh
2
body

h i
€θ tð Þ�mbodyghbody sin θ tð Þ� �¼Mankle tð ÞþMext tð Þ:

ð1Þ

The body has mass mbody with center-of-mass (CoM) a distance
hbody from the ankle joint (Fig. 1(a)). Mankle is the sum of passive
and active torques Mankle ¼MpassiveþMactive, the former represent-
ing torque due to “passive” muscle stiffness and damping, and the
latter being torque due to “active” time-delayed neuromuscular
feedback through proprioceptive, vestibular, and visual sensory
information. The center-of-pressure (CoP) is bounded within the
base-of-support. Since the location of the ankle relative to the foot
does not change the underlying dynamics of the inverted pendu-
lum model, we assume the ankle is directly above the center of the
foot. Therefore, Eq. (1) holds valid when CoPj jr1

2Lf oot , where Lf oot
is the length of each foot (see Appendix A1 for CoP calculation).

Passive control is modeled as a nonlinear proportional-
derivative controller,

Mpassive tð Þ ¼ K tð Þ θ tð Þþβθ3 tð Þ
h i

þC tð Þ _θ tð Þ; ð2Þ

where K tð Þ ¼ KþnK tð Þ is the linear muscle stiffness of nominal gain
K with noise nK tð Þ and β is a dimensionless parameter which
represents the nonlinearity in the force-extension/compression
response of the muscles involved in postural control (Winters and
Stark, 1985). C tð Þ ¼ CþnC tð Þ represents the linear muscle damping
(Barauskas and Krusinskiene, 2007; Fukuoka et al., 2001; Maurer
and Peterka, 2005; Peterka, 2002, 2003; Vette et al., 2010) of
nominal gain C with noise nC tð Þ. Active control generated from
sensory feedback is modeled as a linear time-delayed propor-
tional-derivative controller (Maurer and Peterka, 2005; Peterka,
2002),

Mactive tð Þ ¼ Ka tð Þθ t�τð ÞþCa tð Þ _θ t�τð Þ ð3Þ
where Ka tð Þ ¼ KaþnKa tð Þ is the linear neuromuscular position-
feedback of nominal gain Ka and noise nKa tð Þ, while Ca tð Þ ¼ Caþ
nCa tð Þ is the linear neuromuscular velocity-feedback of nominal
gain Ca and noise nCa tð Þ. The proprioceptive, vestibular, and visual
systems each estimate the sway angle θ. However, because there is
finite time τA 0;1ð Þ for a postural correction to occur after sensing
a deviation, the corrective torque at time t depends on the sway
angle at a delayed time θ t�τð Þ (Masani et al., 2003, 2006; Maurer
and Peterka, 2005; Peterka, 2000, 2002, 2003; Ting et al., 2009;
Vette et al., 2010).

The appropriate model parameters were non-dimensionalized
by the muscle stiffness required to stabilize the upright equili-
brium with no additional feedback ðKcr ¼mbodyghbodyÞ. K is
assumed to be 75% of Kcr , consistent with prior work (Table 1).
β was chosen by matching the amplitude of simulated LCOs using
Eq. (1) to amplitudes seen in people with severe PD (Schmit et al.,
2006) and is assumed to be 6000. As seen in Table 1, there is a lack
of consensus on the appropriate values for C and Ca. While this is
true, we will later show that the choice of using C or Ca has very
little effect on the stability of upright balance; ultimately what
matters is the sum of the two. For this study, we have chosen to
assume C to be 20% of Kcrwhile Ca is 0% of Kcr (for the exception of
the calculation of bifurcation curves only where we show the case
of (i) C ¼ 0:2Kcr with Ca ¼ 0, and (ii) C ¼ 0 with Ca ¼ 0:2Kcr). Mext

Fig. 1. (a) Diagram of inverted pendulum model for anterior-posterior postural sway with forces and correcting moments along with system geometric parameters, and (b) a
block diagram of the postural control system.
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