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a b s t r a c t

One of the most widely used techniques to determine the mechanical properties of cartilage is based on
indentation tests and interpretation of the obtained force–time or displacement-time data. In the current
computational approaches, one needs to simulate the indentation test with finite element models and
use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling proce-
dure is cumbersome, and the simulations need to be repeated for every new experiment. For the first
time, we propose a method for fast and accurate estimation of the mechanical and physical properties of
cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite
element models to simulate the indentation for poroelastic materials with wide combinations of
mechanical and physical properties. The obtained force–time curves are then divided into three parts:
the first two parts of the data is used for training and validation of an artificial neural network, while the
third part is used for testing the trained network. The trained neural network receives the force–time
curves as the input and provides the properties of cartilage as the output. We observed that the trained
network could accurately predict the properties of cartilage within the range of properties for which it
was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast,
since no additional finite element modeling is required once the neural network is trained. The
robustness of the trained artificial neural network in determining the properties of cartilage based on
noisy force–time data was assessed by introducing noise to the simulated force–time data. We found that
the training procedure could be optimized so as to maximize the robustness of the neural network
against noisy force–time data.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Osteoarthritis (OA) is a common chronic disease that develops
as a result of the degeneration of articular cartilage (AC) which
frequently leads to pain and limited mobility (Liu et al., 2014;
Lories and Luyten, 2012). In AC, collagen type II fibers mainly
provide tensile mechanical properties while negatively charged
proteoglycans macromolecules (PGs) provide shear and compres-
sive mechanical properties of AC (Sophia Fox et al., 2009). Changes
in the mechanical and physical properties of AC such as Young's
modulus and permeability as a result of PG loss and collagen fibril

disintegration are the hallmarks of disease progression. Mechan-
ical characterization of AC and its changes over time is therefore
an important research line within the OA community (Stolz et al.,
2009; Wang et al., 2006; Wilusz et al., 2013). Available tools to
investigate the mechanical behavior of cartilage are compression
tests among which the most important ones are confined com-
pression (Boschetti et al., 2004; DiSilvestro and Suh, 2001; Wilson
et al., 2005), unconfined compression (Lu and Mow, 2008; Mow
et al., 1980; Wilson et al., 2005), and indentation tests (Korhonen
et al., 2002; Pawaskar et al., 2010; Warner et al., 2001).

The indentation test offers the advantage of obtaining local
mechanical properties of cartilage accurately (Rettler et al., 2013). It
also does not require cartilage tissue to be cut loose from the bone,
and consequently sophisticated processes for preparing cartilage
before the test do not cause damage to the tissue. It is therefore
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possible to state that the indentation test is an absolutely non-
destructive test (Franz et al., 2001; Lu and Mow, 2008) and conse-
quently it can be performed in vivo (Knecht et al., 2006; Sim et al.,
2014). Indentation tests are shown to be capable of identifying OA and
healthy cartilage at nano-scale (Stolz et al., 2009) and determining the
fixed charge density of cartilage tissue (Le and Fleming, 2008).

One way to specify cartilage's mechanical properties is to apply
analytical solution to the data from the indentation test. Since no
analytical solution for the indentation of poroelastic materials
exists, this approach may lead to errors for the prediction of
mechanical properties of cartilage (Oyen, 2011; Rauker et al.,
2014). The other approach is to use finite element method com-
bined with optimization algorithm by which cartilage properties
can be derived (Cao et al., 2006; Wang et al., 2006). This however
requires cumbersome iterative processes until the best finite ele-
ment model for the problem is achieved (Gupta et al., 2009; Miller
and Morgan, 2010; Richard et al., 2013; Seifzadeh et al., 2012).
Moreover, the entire modeling process needs to be repeated for
every new indentation test.

In this study, we first used finite element models (FEM) to
simulate the indentation of cartilage as a poroelastic material in
relaxation mode for a wide range of properties and their combina-
tions i.e. Young's modulus, Poisson's ratio, permeability, and friction
coefficient between the indenter and cartilage surface. Thereafter, we
used force–time data obtained from FEM as inputs and properties of
articular cartilage as targets to train an artificial neural network
(ANN). This enabled us to extract the precise properties of articular
cartilage under similar boundary conditions as were used in FEM.
This approach will potentially pave the way toward predicting
accurate properties of healthy and OA articular cartilage when the
experimental data from indentation tests are accessible. The long-
term aim of the current study is to conceive a method by which a
user-friendly environment becomes available that could be used to
distinguish between healthy and diseased tissue.

2. Methodology

2.1. Finite element modeling

We used a finite element modeling platform i.e. Abaqus 6.11 to
simulate the indentation test of a cartilage specimen introduced as
a poroelastic material. The essential equations required for model-
ing cartilage are presented (Manda, 2010; Mow et al., 1980)
(Appendix A). Mechanical and physical properties as well as model
assumptions were chosen based on the previous work (Pawaskar et
al., 2010; Spilker et al., 1992; Warner et al., 2001). The cartilage
specimen was assumed to have a thickness of 3 mm and an axi-
symmetric radius of 20 mm to maximally eliminate the edge effects
on the fluid velocity vectors. A spherical indenter with the radius of
5 mm was used in the model (Fig. 1). The cartilage properties are
provided in Table 1 (Goldsmith et al., 1995; Pawaskar et al., 2010;
Spilker et al., 1992; Warner, 2000). The details of finite element
modeling as well as the required boundary conditions are presented
in Appendix B.

We developed an Abaqus user subroutine to identify the con-
tact between the cartilage and the indenter based on Pawaskar's
work (Pawaskar et al., 2010). In this method, when contact stress
on the cartilage's surface is greater than a threshold value, fluid
flow is forced to stop. The developed user subroutine processed
the information received from the solver in each iteration and
created a common block that included all nodes with contact
stress greater than the threshold (URDFILL). The common block
could be accessed by another subroutine (FLOW). In the FLOW, the
closest integration point to the node that has a contact stress
greater than the threshold value is selected and fluid flow is
stopped by setting both the seepage coefficient and sink pore
pressure to zero. Otherwise, it continues to use a seepage coeffi-
cient equal to one while the sink pore pressure remains zero.

2.2. Artificial neural networks (ANNs) application

In this section, we describe how we trained an ANN in MATLAB
2013 for predicting the cartilage mechanical and physical proper-
ties such as elastic modulus, Poisson's ratio, permeability, and
friction coefficient using force–time data (Appendix C. How does
artificial neural network function?).

The indentation test was simulated for a wide range of different
mechanical and physical properties according to the previously
used data from human articular cartilage (Pawaskar et al., 2010):
elastic modulus between 0.1 and 1 MPa, Poisson's ratio between
0.01 and 0.2, permeability between 10�3and 10�2 mm4=N s, and
friction coefficient between 0 and 0.05. For every property, the
variation interval was divided into 10 and finite element models
were run for all possible combinations resulting in 10,000 simu-
lations. The output of this parametric study was force–time data
with 121 different time points which are originated from Abaqus
resampling procedure. The input matrix for training the ANN
therefore contained 10,000�121 force–time data and the target
matrix contained 10,000�4 cartilage properties. In the current
sturdy we used a number of 30 hidden neurons for the noise-free
data and 40 hidden neurons for noisy data. Following the training
of the network, the curves by which the mechanical and physical
properties can be determined were introduced into MATLAB and
the results were effortlessly achieved (CPU time of 0.11 s using a
computer (3.33 GHz (2 cores)).

Fig. 1. The axisymmetric model used for simulation of indentation experiments. Fluid velocity vectors are depicted in this figure for demonstration purposes.

Table 1
Properties of articular cartilage used in finite element simulations
(Goldsmith et al., 1995; Pawaskar et al., 2010; Spilker et al., 1992;
Warner, 2000).

Parameter Value

Poisson's ratio, v 0.08
Permeability, k 4.0�10�3 mm4/N s
Initial void ratio, e0 4.0 (80% interstitial fluid)
Coefficient of friction, f f 0.02

Seepage coefficient, ks 1 mm3/N s – Flow
0 mm3/N s – No flow

Young's modulus, E 0.54 MPa
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