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a b s t r a c t

Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hex-
ahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to
numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetra-
hedron elements in combination with effective contact algorithms, and the perceived increased com-
putational expense of quadratic finite elements. In this study we implemented both ten-node (TET10)
and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their
accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant
to articular contact mechanics. Suitable volume integration and surface integration rules were deter-
mined by comparing the results of several benchmark contact problems. The results demonstrated that
the surface integration rule used to evaluate the contact integrals for quadratic elements affected both
convergence behavior and accuracy of predicted stresses. The computational expense and robustness of
both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15
element demonstrated superior convergence behavior and lower computational cost than both the
TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact pro-
blems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tet-
rahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for
simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10
and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact
mechanics.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Advances in imaging and computational methods make it
possible to create and analyze detailed subject-specific models of
biomechanical structures from high resolution image data. In this
paper we focus on subject-specific finite element (FE) analysis of
articular joint contact mechanics. Both generic and subject-specific
models of articular contact have been developed and validated to
gain insight into load transfer, cartilage mechanics and the etiol-
ogy of osteoarthritis in the knee (Khoshgoftar et al., 2015; Lucz-
kiewicz et al., 2015), hip (Harris et al., 2012; Henak et al., 2014)
ankle (Anderson et al., 2007; Kern and Anderson, 2015) and spine
(Dreischarf et al., 2014; Von Forell et al., 2015), among other joints.
Despite the progress that has been made in modeling subject-

specific joint contact mechanics, many challenges still remain. The
articular cartilage of most joints in the human body has complex
geometry, undergoes large deformations, is subjected to large
compressive loads, and is often thin compared to the surrounding
anatomical support. These challenges make it difficult to obtain
accurate, validated computational models of articular contact
mechanics.

The element type used to discretize the articular geometry is
one of the most important choices that affects accuracy and
robustness in simulations of articular contact. Linear tetrahedral
(TET4) elements are often used due to the ease and robustness of
performing automatic meshing, and local and adaptive refinement
with tetrahedral elements (Hubsch et al., 1995; Johnson and
MacLeod, 1998; Prakash and Ethier, 2001; Spilker et al., 1992)
(Delaunay, 1934; Lo, 1991a, 1991b; Lohner, 1996; McErlain et al.,
2011; Shephard and Georges, 1991; Wrazidlo et al., 1991). There
are several examples in the recent literature that have used TET4
elements to discretize articular cartilage (Das Neves Borges et al.,
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2014; Johnson et al., 2014; McErlain et al., 2011). However, the
TET4 element has several well-known numerical issues. First, TET4
elements can only represent a constant strain state, which
necessitates a very fine discretization, often requiring long solu-
tion times. Second, TET4 elements lock for nearly incompressible
materials as well as under bending deformations (Hughes, 2000),
which further reduces their accuracy. Because of these issues,
trilinear hexahedral elements (HEX8) have seen much wider use
in joint contact analyses, despite the fact that creating hexahedral
meshes for complex geometries can be challenging and time
consuming. Alternative formulations for TET4 elements have been
designed to circumvent their problems (e.g., (Gee et al., 2009; Puso
and Solberg, 2006) based on nodal averaging of the deformation
gradient). Although they reduce locking, they have other problems
such us spurious deformation modes (Maas, 2011), which make
them inaccurate for contact analysis.

Quadratic tetrahedral elements are an attractive alternative to
TET4 elements. They maintain the advantages of tetrahedral mesh
generation and they can represent curved boundaries more
accurately than HEX8 elements since their edges and faces can
deform. Although quadratic tetrahedral elements have been
investigated as alternatives to HEX8 elements (e.g., (Cifuentes and
Kalbag, 1992; Tadepalli et al., 2011; Weingarten, 1994)), none of
these studies investigated their application for simulation of
articular contact analyses. The 10-node tetrahedron (TET10) has
seen some limited use for contact mechanics (Bunbar et al., 2001;
Hao et al., 2011; Tadepalli et al., 2011; Wan et al., 2013; Yang and
Spilker, 2006). To our knowledge the 15-node tetrahedron (TET15)
has never been used in computational biomechanics and it has
seen very limited use in nonlinear computational solid mechanics
at all (Danielson, 2014), although it has been used in the fluid
mechanics community (Bertrand et al., 1992).

The objectives of this study were to determine the efficacy in
terms of accuracy of the recovered stresses, robustness in terms of
the convergence behavior, and computational expense of the
TET10 and TET15 elements compared to the HEX8 element in the
context of articular contact mechanics. First, the effects of different
integration rules on the stress predictions and computational cost
were investigated and used to determine suitable integration rules
for both the TET10 and TET15 elements. Then using these inte-
gration rules, the accuracy and computational cost of both ele-
ments were compared to the HEX8 element for several benchmark
contact problems. For one of these problems, we examined the
results obtained using TET4 elements to contrast their perfor-
mance with the quadratic elements. Finally, we compared pre-
dictions of contact stresses using HEX8, TET10, and TET15 ele-
ments for a validated model of hip contact mechanics (Henak
et al., 2014).

2. Methods

2.1. Element formulation and numerical integration

All element formulations in this research were implemented in the FEBio
software suite (www.febio.org), which uses an implicit, Newton-based method to
solve the nonlinear FE equations of solid mechanics (Maas et al., 2012a). The TET10
element has 10 nodes: 4 corner nodes and 6 nodes located at the midpoint of the
edges (Fig. 1). Due to the quadratic shape functions, the facets and edges of this
element can distort and therefore the element behavior is “softer” than the TET4
element. The TET15 element adds one more node at the center of each facet, and
one in the center of the tetrahedron (Fig. 1). Although the TET15 element has more
nodes than the TET10, it is still a quadratic element since the highest order of
complete polynomial that can be represented by the shape functions is second
order. The TET15 element can represent some forms of quadratic strains, whereas
the TET10 element can only represent linear strains.

In a FE formulation, the discretized form of the equilibrium equations requires the
use of appropriate numerical integration schemes. For second-order elements, the
integration rule should have at least second-order accuracy, at least for linear analyses.
The ideal integration rule is less clear for large deformation nonlinear analyses. For this
reason, we implemented and compared several volumetric integration rules. We
denote volume integration rules as V(n) where (n) indicates the number of integration
points. Similarly, the notation S(n) is used to denote surface integration rules. For the
TET10 element, both 4-point (V4) and 8-point (V8) Gauss integration rules were
implemented (Abramowitz and Stegun, 1964). For the TET15 element, 11-point (V11)
and 15-point (V15) Gauss integration rules were implemented (Keast, 1986). All of
these rules are at least second-order accurate (for linear analyses) and are symmetric,
i.e. the integration points are distributed in a symmetrical spatial pattern.

For contact enforcement, a surface integration rule is required to integrate the
traction forces over the discrete surface, represented by facets of the finite ele-
ments. The facets of the TET10 element are 6-node quadratic triangles. Two surface
integration rules were implemented and compared: 3-point Gauss (S3), and 7-
point Gauss (S7) (Fig. 2). For the TET15 element, a 7-node quadratic facet, and the
same S3 and S7 integration rules were implemented. Again, these rules have at
least second-order accuracy and are symmetric (Abramowitz and Stegun, 1964).

The mean dilatation formulation was used for the HEX8 models (Simo and
Taylor, 1991). This formulation is known to perform well for nearly-incompressible
materials for which the standard displacement-based formulation, using full inte-
gration, has a tendency to lock.

All analyses were performed using the quasi-Newton solver in FEBio (Maas et al.,
2012b), which is based on the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
(Matthies and Strang, 1979). This nonlinear solver begins with a full formation and
factorization of the stiffness matrix and then proceeds with a user-defined number of
BFGS updates, which involve computation of the right-hand-side (RHS) vector. For two
of the problems below, we report both the number of stiffness matrix reformations and
RHS evaluations as metrics of nonlinear convergence and computational effort. All
contact analyses used the “sliding-tension-compression” contact algorithm in FEBio
(Maas et al., 2012b). This algorithm implements a facet-on-facet, frictionless sliding
contact where the contacting surfaces can separate but not penetrate (Laursen, 2002).
The augmented Lagrangian method was used to enforce the contact constraint to a
user-defined tolerance (Laursen and Maker, 1995).

2.2. Stress recovery

During the FE solution process, stresses are typically evaluated at the integration
points. Since stresses are calculated using the shape function derivatives, they are
usually discontinuous across element boundaries. For visualization and for further
post-processing analysis (e.g. a-posteriori stress error estimates (Zienkiewicz and Zhu,

Fig. 1. Schematic of the node topology for two quadratic tetrahedral elements that were examined in this study. Left, 10-node quadratic tetrahedron (TET10). Right, 15-node
quadratic tetrahedron (TET15). Closed circles represent corner nodes, open circles represent edge nodes, triangles represent facet center nodes, and the square in the right
image represents the center node of the TET15 element.
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