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a b s t r a c t

The paper focuses on the connection between elastic and electrical properties of cortical bone. Both these
properties are governed by microstructure that consists of several pore systems filled with mechanically
soft and electrically conductive tissue. Microstructural changes induced by aging, various diseases,
microgravity conditions etc. lead to variation in both properties. The paper address the problem of
evaluation of the changes in mechanical performance (decrease in Young's moduli) via monitoring
electrical conductivity. The theoretical results are verified experimentally.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

We establish cross-property connections between mechanical
and electrical properties of cortical bone. Such connections relate
changes in different physical properties caused by the presence
and/or development of certain microstructure. To the best of our
knowledge, existence of the cross-property connections has been
first recognized by Bristow (1960) who considered metals con-
taining multiple randomly oriented microcracks. The existence of
explicit quantitative cross-property connections between two phy-
sical properties depends on the possibility to express them in
terms of the same or sufficiently similar microstructural parameter
(Kachanov and Sevostianov, 2005). Critical review of the existing
results on cross-property connections with detailed analysis of
various applications is given by Sevostianov and Kachanov (2009).

In the context of properties of bone, the observations of cross-
property connections are mostly of qualitative nature (see, for
example, Sierpowska et al., 2006 and Sevostianov, 2014). The main
challenge in developing the quantitative cross-property connec-
tions for cortical bone is related to the fact that the elastic prop-
erties are mostly determined by the porous dense tissue-effect of
the presence of biological fluids and soft tissue in the porous space
plays only a minor role. On the other hand, namely these con-
stituents are responsible for bone's electrical conductivity. Cross-
property connection for materials of this kind has been derived by
Berryman and Milton (1988) in the form of inequality for the case
when both the constituents as well as the overall material are
isotropic.

In the text to follow, we express the tensor of elastic com-
pliances in terms of the overall conductivity tensor in the closed
form using the similarity between the microstructural parameters
governing the two said properties. The results are validated
experimentally and significant correlation between experimental
and theoretical results has been observed.

2. Modeling of the microstructure of cortical bone

Overall electrical and elastic properties of cortical bone are
largely determined by their microstructure comprising a large
number of interconnected diverse pores filled with electrically
conductive biological liquids and soft tissue-blood, lymph, nerve
tissue etc.

In our analysis, based on description given by Martin and Burr
(1989), Currey (2002) and Fung (1993) sketched in Fig. 1, we
model cortical bone as a porous elastically transversely isotropic
material of low electrical conductivity comprised of three systems
of pores filled with elastically soft and electrically highly con-
ductive tissue. Haversian canals are modeled as a system of par-
allel cylindrical pores (strongly prolate spheroidal inhomogene-
ities, Mura, 1987), in which their axes of geometrical symmetry
coincide with the axes of the material symmetry of the matrix (the
axis of transverse-isotropy, x3). The osteocyte lacunae, modeled as
oblate spheroidal cavities in a plane of transverse-isotropy (planes
normal to Haversian canals). Canaliculi and Volkman's canals are
treated as a set of thin cylindrical pores, with the axes of rotation
perpendicular to the axis of transverse-isotropy of the matrix,
which means they are lying in planes of transverse-isotropy and
are randomly oriented in these planes.
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The aspect ratios of the spheroids have been estimated as
follows

� For Haversian canals we calculated the aspect ratio as
γ ¼ 3h=4R, where h is the height of the osteon (we used average
value of 4 mm) and R is the radius of the Haversian canal (we
used 25 mm). Thus calculated aspect ratio γ ¼ 120 allows one to
preserve the volume of the inhomogeneity with fixed radius.

� Similarly, for Volkman's canals and canaliculi (accounted toge-
ther) we used for h the difference between the radius of the
osteon and the radius of the Haversian canal (125 mm) and for R,
we used average radius of the canals (1.5 mm). The calculated
aspect ratio is 80.

� The aspect ratio of the lacunae was taken as 0.2 in accordance
with the observations of Currey (1962, 2002).

Although pores of different types have very different sizes,
their partial porosities are comparable. Indeed, 1 mm3 of the bone
typically contains about 25,000 of osteocyte lacunae with the total
surface area 5 mm2/mm3, about 106 canaliculi with the total sur-
face area of 160 mm2/mm3 and about 20 Haversian canals with the
total surface area of 3 mm2/mm3 (Martin and Burr, 1989). These
numbers imply partial porosities for each of these types in the
range 0.075–0.120. Thus, it does not seem adequate to attribute
entire porosity of the cortical bone to the Haversian canals as in
the model proposed by Dong and Guo (2004, 2006).

As stated above, the channels and pores contain blood and
lymph vessels, nerve fibers, and living cells. The influence of these
fluids and soft tissues can be neglected in the context of the overall
elastic response. Indeed, elastic stiffness of the mineralized tissue
is of the order of several GPa, while Young's moduli of blood
vessels are of the order of 10 MPa at pressures of 100 mm Hg,
(Wesly et al., 1975). Young's moduli for the nerve tissue and for the
cells are of the order of 4�10 MPa (Beel et al., 1984), and of 1 kPa,
(Theret et al., 1988), correspondingly. Thus, in the context of elastic
properties, we treat the pores as empty ones embedded in the
dense tissue that represents a combination of collagen fibers
(protein), and hydroxyapatite Ca10(PO4)6(OH)2 crystals (mineral),
(Katz, 1980). Mineralized tissue possesses transversally isotropic
mechanical properties (Currey and Zioupos, 2001); in our calcu-
lations, we used the extrapolated data of Dong and Guo (2006) for
dense tissue (Table 1) as well as our own measurements. In the
context of electrical properties, we model the mineralized tissue as
the isotropic background of very low conductivity, thus ignoring

the bone matrix anisotropy since electrical conductivity of the
matrix being different in different directions is still very small. The
electrical conductivity of the bone matrix was extrapolated from
the measurements to zero porosity and taken for calculation of
cross-property coefficients as k0 ¼ 3:841 mS=m (see Section 6).
The effect of the conductive soft tissue on the overall electrical
properties of the bone is dominant; for the conductivity of the soft
tissue we used k1 ¼ 1:5 S=m according to Hirsh et al. (1950), Visser
(1992), and Hoetink et al. (2004).

3. Background material: property contribution tensors

We consider a homogeneous elastic material (matrix), with the
compliance tensor S0 and electrical resistivity r0 containing an
inhomogeneity of volume V1 with the compliance tensor S1 and
electrical resistivity r1. Compliance contribution tensors have been
first introduced in the context of ellipsoidal pores and cracks in
isotropic material by Horii and Nemat-Nesser (1983). For general
case of ellipsoidal elastic inhomogeneities embedded in an iso-
tropic matrix, these tensors were formally defined and calculated
by Sevostianov and Kachanov (1999, 2002). Sevostianov et al.
(2005) calculated components of this tensor for a spheroidal
inhomogeneity embedded in a transversely-isotropic material. The
compliance contribution tensor of the inhomogeneity is a fourth-
rank tensor H that gives the extra strain (per reference volume V)
due to its presence:

Δ ϵ¼ V1

V
H : σ1; or; in components; Δϵij ¼

V1

V
Hijklσ1

kl ð3:1Þ

where σ1
kl are remotely applied stresses that are assumed to be

uniform within V in the absence of the inhomogeneity.
In the case of multiple inhomogeneities, the effective com-

pliance, calculated in the non-interaction approximation (NIA) is
given by

Sijkl ¼ S0ijklþ
1
V

X
m
VmH

mð Þ
ijkl ð3:2Þ

For an ellipsoidal inhomogeneity, its compliance contribution
tensor is expressed in terms of Hill's tensor Pijkl (Hill, 1963, Wal-
pole, 1969) as

H ¼ S1�S0
� ��1

þC0 : J�P : C0
� �� ��1

; ð3:3Þ

Hence, the problem of calculating the components of Hijkl for an
ellipsoidal inhomogeneity is reduced to the calculation of Hill's
tensor. The expressions for the components Pijkl of this tensor for a
spheroidal inhomogeneity aligned with the axis of a transversely-
isotropic material were derived by Sevostianov et al. (2005) in the
following form

Pijkl ¼ p1T
1
ijklþp2T

2
ijklþp3T

3
ijklþp4T

4
ijklþp5T

5
ijklþp6T

6
ijkl ð3:4Þ

where basic tensors Tm
ijkl and coefficients p1 are given in the

Appendix. Using formula (3.3) and the rule of multiplication for
tensors represented in terms of standard tensor basis allow one to
calculate components of the compliance contribution tensor.
Fig. 2a and b illustrates dependence of the components of tensors

Fig. 1. Microstructure of cortical bone used in the present model: it is formed by
osteons surrounding Haversian canals that contain blood and lymph vessels and
nerves. Volkman's canals and canaliculi are randomly oriented in the planes
orthogonal to the Haversian canals. The lamellae in osteons contain osteocytes
located in oblate spheroidal pores (lacunae).

Table 1
The transversely isotropic elastic constants of cortical bone calculated based on
mechanical testing done by Dong and Guo (2004).

E1ðGPaÞ E3ðGPaÞ ν31 G12ðGPaÞ G13ðGPaÞ

11.419 24.16 0.38 3.9 6.54
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