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a b s t r a c t

Falls are the primary cause of accidental injuries (52%) and one of the leading causes of death in indi-
viduals aged 65 and above. More than 50% of falls in healthy older adults are due to tripping while
walking. Minimum toe clearance (i.e., minimum height of the toe above the ground during the mid-
swing phase - MTC) has been investigated as an indicator of tripping risk. There is increasing demand for
practicable gait monitoring using wearable sensors such as Inertial Measurement Units (IMU) comprising
accelerometers and gyroscopes due to their wearability, compactness and low cost. A major limitation
however, is intrinsic noise making acceleration integration unreliable and inaccurate for estimating MTC
height from IMU data. A machine learning approach to MTC height estimation was investigated in this
paper incorporating features from both raw and integrated inertial signals to train Generalized Regres-
sion Neural Networks (GRNN) models using a hill-climbing feature-selection method. The GRNN based
MTC height predictions demonstrated root-mean-square-error (RMSE) of 6.6 mm with 9 optimum fea-
tures for young adults and 7.1 mm RMSE with 5 features for the older adults during treadmill walking.
The GRNN based MTC height estimation method devised in this project represents approximately 68%
less RMSE than other estimation techniques. The research findings show a strong potential for gait
monitoring outside the laboratory to provide real-time MTC height information during everyday loco-
motion.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Tripping is one of the major causes of falls in the elderly (Blake
et al., 1988) and a critical indicator of tripping risk is Minimum Toe
Clearance (MTC), a biomechanical event during the mid-swing
phase of the gait cycle. At MTC toe-ground clearance is small,
typically 10–30 mm, the foot's horizontal velocity is at or near
maximum and the body is supported by only one foot. Previous gait
studies have investigated ageing (Barrett et al., 2010; Mills
et al., 2008; Nagano et al., 2011; Taylor, 2012), walking speed
(Chung and Wang, 2009), attention demands (Schulz et al., 2010;
Sparrow et al., 2008) and tripping risk (Barrett et al., 2010; Begg
et al., 2007) using MTC height distribution, characterized using the

mean or median and standard deviation (SD) or inter quartile range.
To date, accurate MTC height measurements have been possible
only using 3D motion tracking systems in institutional gait labora-
tories (Guangyi et al., 2009; Zhou and Hu, 2008). Tirosh et al. (2013),
for example, demonstrated that tripping risk could be reduced with
a real-time display of toe-trajectory and MTC height from a 3D
motion capture in both young and older adults by training them to
target MTC height within a safer band above the baseline. Falls in
older people and other gait impaired populations such as stroke
patients, occur in everyday settings and there is an urgent need for
an easily operated, portable, and inexpensive motion sensor based
system capable of measuring MTC height during everyday loco-
motion (Hamacher et al., 2011; Lai et al., 2008b; Lau and Tong,
2008).

Inertial Measurement Units (IMUs or inertial sensors) are portable,
light, inexpensive, low-power devices increasingly used in motion
analysis (Dadashi et al., 2014; Ge and Shuwan, 2008; Lau
et al., 2008; Mariani et al., 2012; Najafi et al., 2002; Zhou and Hu,
2008). IMUs directly measure linear acceleration and angular velocity
but deriving positional data from IMU signals is a major challenge due
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to the “drift” over time issue, the essential limitation to IMU tech-
nology (Findlow et al., 2008; Guangyi et al., 2009; Lai
et al., 2008b). Techniques such as strap down integration and
regression have improved measurement accuracy for stride length
(Peruzzi et al., 2011; Sabatini, 2005; Sabatini et al., 2005), walking
speed (Li et al., 2010; Mannini and Sabatini, 2014), maximum toe-
clearance (Mariani et al., 2010) and walking surface inclination
(Sabatini, 2005). Using IMUs to measure MTC height, a narrower-
range (10–30mm) biomechanical parameter, remains a challenge
because small errors in integration and regression considerably affect
accuracy. Recently Mariani et al. (2012) used a de-drifted double-
integration technique to estimate mean MTC height from inertial
sensor data and reported the mean (�12.7 mm) and standard
deviation (9.0 mm) of the difference between estimated and mea-
sured mean MTC height as accuracy and precision respectively. From
these results, a root-mean-square-error (RMSE) of 21.7 mm can be
estimated by summing absolute accuracy and precision. Using a
quadratic regression modeling technique, McGrath et al. (2011)
showed that foot mounted inertial sensors could estimate mean MTC
height with upto 17.3 mm RMSE.

Given that MTC height is typically only 25 mm, the RMSE
values reported above would be impractical for further imple-
mentation of real-time MTC height monitoring of individual stride
cycles. Lai et al. (2009) have, however, demonstrated that accel-
eration features from double differentiated camera-captured 3D
displacement–time data could predict individual stride MTC
height with an RMSE of 6.1 mm one gait cycle ahead. Lai et al.
(2009) utilized Generalized Regression Neural Network (GRNN)
machine learning to reveal the underlying relationship between
toe trajectory control and accelerations derived from double dif-
ferentiating motion captured position-time data. The GRNN is
based on nonlinear regression theory for function estimation
(Specht, 1991). The network architecture of GRNN is a one-pass
learning algorithm which does not require an iterative training
procedure as in the back-propagation method (Specht, 1991). Even
with sparse data in a multi-dimensional measurement space, the
algorithm provides smooth transitions from one observed value to
another (Özgür, 2006). Unlike feedforward back-propagation
method, GRNN simulations performance is less sensitive to ran-
domly assigned initial weight value. Further, the local minima
problem was not faced in GRNN simulations (Özgür, 2006).
Despite these advantages no previous studies have applied GRNN
machine learning to estimate MTC height from inertial sensor
signals. The research question addressed in the present investi-
gation was whether GRNN machine learning would estimate MTC
heights from IMU signals with greater accuracy than previously
reported for de-drifted integration and quadratic regression.

2. Methodology

2.1. GRNN for machine learning

The Generalized Regression Neural Network (GRNN) consisting
of a radial basis layer and a special linear layer (Specht, 1991) was
used to learn the underlying relationship between IMU sensor
signals features and the target – MTC height. The estimated MTC
height ŷ is obtained using the following equation where σ is the
width of the radial basis function:

GðZÞ ¼ 1
2π kþ1
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The distance between the training sample and point of
prediction measures how well each training sample represents the
predicted position. If this distance is small, the exponential com-
ponent becomes large such that a particular training sample best
predicts the new value. The distance between the other training
samples and the point of prediction is large, thus the exponential
component is small and contributes less to the prediction. The
GRNN was implemented in MATLAB v7.2 which required the user
to select the model parameter. With a very small parameter the
model over-fits the data and reduces generalizability. With larger
parameters estimation becomes smoother (generalization increa-
ses) but may be less accurate.

A leave-one-subject-out (LOSO) cross validation method was
used to obtain the optimum GRNN model for each group sepa-
rately (Lai et al., 2008c). In this method, data from the 13 subjects
were used to train the model and the remaining subject was tes-
ted. This was done for each subject sequentially and the group’s
mean accuracy was compared for different model parameters and
combinations of feature. In all cases, each inertial sensor feature
was scaled by calculating its z-score (i.e ðx�μÞ=σ where μ is the
mean and σ is the SD for the training gait feature) before applying
them to the regressor. Normalizing training data using z-scores
minimized numerical computational error and improved con-
vergence. Estimation accuracy was calculated as root-mean-
square-error (RMSE) between measured MTC height ðyiÞ and
estimated MTC height ðŷiÞ defined as:

RMSE¼
ffiffiffiffi
1
N

r XN

i ¼ 1
ðyi� ŷiÞ2

where N is total number of gait cycles across all 14 subjects.

2.2. Hill-climbing feature-selection

A hill-climbing feature-selection method (Begg et al., 2005)
was applied to eliminate redundant features and to choose the
optimum feature set to estimate MTC height for both young and
elderly separately. The feature-selection method began by com-
puting the LOSO RMSE for an individual feature using the fol-
lowing values for model parameters: 0.0001, 0.01, 0.1, 1, 10, 50, 100,
500, and 1000. The feature with the lowest LOSO mean RMSE was
retained and the algorithm executed to combine the remaining
features sequentially, with the first feature having a fixed model
parameter. The second best feature which further reduced RMSE
in combination with the first was retained. The algorithm then
proceeded in the same fashion until the RMSE value began to
increase again. The optimum feature set was the combination
which produced the lowest LOSO mean RMSE. Once the optimum
feature set was obtained, the model parameter was narrowed to a
0.5–1.5 window and tested in 0.1 increments to obtain the opti-
mum value which produced the least RMSE for each group. The
lowest LOSO mean RMSE across 14 subjects for both groups
separately was used to select the most effective GRNN model.

2.3. Sensor integration

A wireless foot-worn sensor module was employed utilizing a
Sparkfun IMU digital combo board with 6 degrees of freedom
(DOF) consisting of an accelerometer - ADXL345 and a gyroscope-
ITG3200 to measure the distal foot linear accelerations and
angular velocities (Fig. 1). The completely assembled sensor sys-
temweighed 78.7 g including a battery. The ultra low-powered tri-
axis accelerometer had a 716g (g represents gravitational accel-
eration, 1g ¼ 9.8 m/s2) capacity in full-scale and a maximum
3200 Hz bandwidth. The digital accelerometer's sensitivity was
31.2 LSB/g, measured by the number of least significant bits
required to represent a change of 1g. The ITG3200 16 bit digital
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