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a b s t r a c t

This study presents a framework for viscoelasticity where the free energy density depends on the stored
energy of intact strong and weak bonds, where weak bonds break and reform in response to loading. The
stress is evaluated by differentiating the free energy density with respect to the deformation gradient,
similar to the conventional approach for hyperelasticity. The breaking and reformation of weak bonds is
treated as a reaction governed by the axiom of mass balance, where the constitutive relation for the
mass supply governs the bond kinetics. The evolving mass contents of these weak bonds serve as
observable state variables. Weak bonds reform in an energy-free and stress-free state, therefore their
reference configuration is given by the current configuration at the time of their reformation. A principal
advantage of this formulation is the availability of a strain energy density function that depends only on
observable state variables, also allowing for a separation of the contributions of strong and weak bonds.
The Clausius–Duhem inequality is satisfied by requiring that the net free energy from all breaking bonds
must be decreasing at all times. In the limit of infinitesimal strains, linear stress–strain responses and
first-order kinetics for breaking and reforming of weak bonds, the reactive framework reduces exactly to
classical linear viscoelasticity. For large strains, the reactive and classical quasilinear viscoelasticity
theories produce different equations, though responses to standard loading configurations behave
similarly. This formulation complements existing tools for modeling the nonlinear viscoelastic response
of biological soft tissues under large deformations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many biological soft tissues exhibit viscoelastic responses
(Fung, 1981), often with relaxation times that depend on the strain
magnitude, suggesting a nonlinear viscoelastic behavior (Provenzano
et al., 2001; Park and Ateshian, 2006; Duenwald et al., 2009). Though
nonlinear viscoelasticity frameworks such as that of Schapery (1969)
are used in biomechanics (Provenzano et al., 2002; Duenwald et al.,
2010), they have not been adopted widely possibly because exist-
ing formulations remain complex. Nonlinear elasticity formulations
broadly follow the elegant framework of Coleman and Noll (1963),
where the stress response is derived from a free energy potential
expressed as a function of the deformation gradient. However, that
simplicity has not yet emerged in formulations of viscoelasticity.

Viscoelasticity is a macroscopic manifestation of the dissipation of
energy in a loaded continuum. Microscopically, in long chain poly-
meric materials such as biological soft tissues, themechanisms causing
loss of free energy are typically related to breakage and reforming of
weak molecular bonds under loading. Historically, formulations of

viscoelasticity have relied on the introduction of internal variables to
account for the relaxation mechanism characteristic of viscoelasticity,
as first proposed by Green and Tobolsky (1946) for polymer solutions,
and subsequently extended by Lubliner (1985) for isotropic solids and
by Simo (1987) for anisotropic solids.

Internal state variables, also known as hidden variables, are non-
observable by definition. Coleman and Gurtin (1967) provided a
formalism for the thermodynamics of continua that employ internal
state variables, which influence the free energy and are governed by
differential equations involving the state of strain. Holzapfel and
Simo (1996) and Holzapfel (1996) explicitly appealed to the formal-
ism of Coleman and Gurtin (1967) in their modeling of solids with
linear viscoelasticity.

Other authors, such as Fung (1981) and Puso and Weiss (1998),
directly adopted the Boltzmann superposition principle for linear
viscoelasticity with nonlinear elastic behavior. Fung (1981) described
this type of material response as quasilinear viscoelasticity. These
equivalent approaches have become the common standard for
modeling viscoelastic tissues in the field of biomechanics.

An alternative approach to this traditional framework has been
proposed by Wineman (2009), based on the concept of elastomer
scission and cross-linking introduced by Tobolsky (1960), and
using the framework of microstructural changes presented by
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Wineman and Rajagopal (1990) and Rajagopal and Wineman
(1992).

The main objective of this study is to demonstrate that a complete
framework for nonlinear viscoelasticity may be formulated using only
observable state variables, where the stress is derived from a free
energy potential using the traditional approach of Coleman and Noll
(1963). This objective is achieved by reformulating Green and Tobolsky
(1946)'s bond-breaking-and-reforming concept in the context of con-
strained reactive multigenerational solid mixtures (Ateshian, 2007;
Ateshian and Ricken, 2010), where bonds are treated as mixture cons-
tituents whose breakage and reforming into new bonds is modeled as a
reaction governed by the axiom of mass balance.

Permanent strong bonds are responsible for the elastic response
and reacting weak molecular bonds that repeatedly break and
reform are responsible for the viscous response. Consistent with
concepts introduced by Green and Tobolsky (1946) and Tobolsky
(1960), and reprised by Wineman (2009), this approach assumes
that weak molecular bonds can only sustain their loaded config-
uration temporarily, eventually breaking and immediately reform-
ing into a new unloaded configuration that coincides with the
current configuration of the mixture. Multiple generations of break-
ing and reforming bonds may exist simultaneously, each with its
own reference configuration.

2. Reactive viscoelasticity

2.1. General formulation

The detailed formulation of the reactive mixture viscoelasticity
framework is presented in Section S.1 of the Supplemental materials.
The key finding from this formulation is that the strain energy
density Ψr of a viscoelastic solid is dependent on the free energy
stored in strong bonds that are permanent (in the absence of
damage), and in weak bonds that break and reform in response to
the loading. Strong bonds provide the elastic response and weak
bonds are responsible for the viscous response.

In the master reference configuration X of the viscoelastic solid,
all bonds are unloaded and intact. Upon loading, weak loaded bonds
progressively break over time; when they break, they immediately
reform into unloaded weak bonds (Section S.2). Newly formed weak
bonds may break and reform again when subjected to further
loading. Bonds formed at time t¼u have a reference configuration
Xu that coincides with the current configuration of the material at
time u, thus Xu ¼ χ ðX;uÞ, where χ ðX; tÞ denotes the motion of the
solid relative to the master configuration X, which also corresponds
to the motion of the strong bonds. Weak bonds that (re)form at time
u are described as u-generation bonds.

Different weak bond species may coexist in a viscoelastic solid,
which may break and reform at different rates, or in response to
different forms of loading. For example, some bonds may only break
and reform in response to distortional strain, whereas others may
respond to dilatational strain. These distinctions become important
in the context of formulating a general viscoelasticity theory as
addressed below. However, for simplicity, we start by assuming that
there is only one species of weak bonds. All weak bonds can break
and reform at any time t; let wuðX; tÞ represent the current mass
fraction of total weak bonds from this species that were (re)formed
at u. By definition, wu is bounded (0rwur1) and its value is zero
for tru. The bond mass fraction wu represents an observable (i.e.,
non-hidden) state variable in this formulation, whose temporal
evolution is governed by the axiom of mass balance.

Let the free energy density of strong bonds be denoted by
Ψ e

r ðθ;FÞ, where θ is the absolute temperature and F¼ ∂χ =∂X is the
deformation gradient of the solid. Similarly, let the free energy
density of weak bonds formed at u be denoted by wuΨ b

0 θ; Fu
� �

,

where Ψ0
b is the free energy density of this weak bond species

when all its bonds are intact (Section S.3), and Fu ¼ ∂χ =∂Xu is the
deformation gradient relative to the reference configuration Xu.
These two deformation gradients are related by

FðX; tÞ ¼ FuðX; tÞ � FðX;uÞ ð1Þ
where FðX;uÞ ¼ ∂Xu=∂X is time-invariant. FuðX; tÞ is equivalent to
Truesdell and Noll (1992)'s relative deformation gradient FðuÞðX; tÞ.
When bond generations occur at discrete times u (i.e., if the strain
changes stepwise at discrete time points), the net free energy
density of the viscoelastic solid is given by

Ψ r θ; F;wγ� �¼Ψ e
r ðθ; FÞþ

X
u
wuΨ b

0 θ; Fu
� � ð2Þ

where wγ refers generically to all wu's and the summation is taken
over all discrete generations u; all state variables in this expression
(i.e., θ, F or Fu, and wu) are evaluated at ðX; tÞ. In the treatment below,
the following notational simplification is adopted: for state variables v,
we may use the simplified notation vðtÞ � vðX; tÞ. For functions of state
f, we may use the simplified notations f ðvÞ � f ðv;X; tÞ and f ½vðtÞ� �
f ðv;X; tÞ when the time variable must be explicit.

For self-consistency in the summation of Eq. (2), the free energy
density Ψ0

b represents free energy per volume in the reference
configuration X. The corresponding expression for the Cauchy stress
T of the viscoelastic solid is derived from this expression using the
standard hyperelasticity relation, as shown from the theory of
constrained solid mixtures (Ateshian and Ricken, 2010)

T θ; F;wγ� �¼ 1
J
∂Ψ r θ;F;wγ

� �
∂F

� FT ð3Þ

Substituting Eq. (2) into Eq. (3), employing the relation of Eq. (1) and
recognizes that wu's are state variables independent of the deforma-
tion gradient produces

T θ; F;wγ� �¼ Teðθ; FÞþ
X
u
wuTb θ; Fu

� � ð4Þ

Here, Teðθ; FÞ is the Cauchy stress resulting from strong bonds

Teðθ; FÞ ¼ 1
J
∂Ψ e

r ðθ; FÞ
∂F

� FT ð5Þ

where J ¼ det F, and Tb θ; Fu
� �

is the Cauchy stress of fully intact weak
bonds

Tb θ;Fu
� �¼ 1

J
∂Ψ b

0 θ; Fu
� �
∂Fu

� Fu
� �T ð6Þ

Details of the differentiation are presented in Section S.4.

2.2. Bond kinetics

The time evolution of the bond mass fraction wu is governed by
the kinetics of bond breaking and reforming (Section S.2), con-
strained by the axiom of mass balance for each bond generation

∂wu=∂t ¼ ŵu ð7Þ
where ŵu is the bond mass fraction supply to generation u from all
other generations (Section S.3). Since ŵu is a function of state, its
functional form must be provided by a constitutive model that
describes the rate of bond reforming and breaking in response to
loading. In general, ŵu is a function of all the state variables θ; F;wγ

� �
in this framework. According to the axiom of mass balance for the
mixture, there can be no net change in total bond mass from this
speciesX
u

ŵu ¼ 0 ð8Þ

Combining Eqs. (7) and (8), integrating the resulting expression and
making use of the initial condition when there is only a single
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