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a b s t r a c t

A critical component of a growth and yield simulator is an estimate of mortality rates. The mortality mod-
els presented here are developed from long-term permanent plots in provinces from throughout the geo-
graphic range of ponderosa pine in the United States extending from the Black Hills of South Dakota to
the Pacific Coast. The study had two objectives: estimation of the probability of a tree survival for the
next 5 years and the probability of a tree surviving longer than a given time period (survival trend) for
a given set of covariates. The probability of a tree surviving for the next 5 years was estimated using a
logistic model regressed on 18 covariates measured 5 years before the last measurement period with
15 smoothing variables (S1–S15) for spatial effects of latitude and longitude surface. The fitted model
showed that the probability of survival increased with increasing diameter at breast height (DBH),
DBH periodic annual increment (PAIDBH) and increasing plot basal area/number of trees per hectare
(PBAH/TPH), and decreased with increasing average of the 5 tallest trees in the plot (AVGHT5) when other
selected covariates were included in the model. The probability of a tree surviving longer than a given
time period was estimated by fitting the Cox Proportional Hazard model to the last observed survival per-
iod regressed on 13 covariates measured at the first measurement period. This probability also increased
with increasing DBH and PAIDBH, and decreased with increasing AVGHT5. The Akaike’s Information
Criterion (AIC) and graphs of partial residuals were used in the selection of covariates included in the
models.

Published by Elsevier B.V.

1. Introduction

Competition among trees is one of the main factors determining
their growth and mortality (Oliver and Uzoh, 1997; Zeide, 2004).
The competition stressors can be long-term or short-term (van
Mantgem et al., 2003). For a model to adequately characterize tree
growth it must include estimates of mortality rates (or survival),
because mortality is an integral part of stand dynamics (Monserud,
1976; Hamilton, 1986; Hann and Wang, 1990). The literature on
modeling tree mortality is voluminous; nevertheless, mortality
estimates remain the weakest link in growth and yield simulators
because of estimation difficulties (Hamilton, 1986). There are two
main causes of tree mortality: external and internal factors. Mor-
tality resulting from external factors tends to be episodic and often
even catastrophic, especially if mortality is a result of factors such
as bark beetles, root disease, or wind. Mortality resulting from
internal factors arises from inter-tree competition and it tends to
be more uniform and constant (Oliver and Uzoh, 1997).

The first generation of statistical mortality models was at the
stand level, predicting the future number of trees per unit area
(Lee, 1971; Moser, 1972; Ek, 1974; Somers et al., 1980; Clutter
et al., 1983; Harms, 1983). Subsequently, Hamilton (1974) and
Monserud (1976) introduced the use of logistic regression models
for individual tree mortality response.

Survival analysis is a recent improvement in assessing mortality
trends and dynamics of individual trees. Woodall et al. (2005) pro-
vided a superb history and reason for the use of survival analysis in
modeling tree mortality. In general, survival analysis is a collection
of statistical procedures for data analysis used for studying the
occurrence and timing of events for which the outcome variable
of interest is most often death, which was the purpose for their ori-
ginal designs (Kleinbaum and Klein, 2005; Woodall et al., 2005;
Allison, 2010). The uniqueness of survival analysis stems from the
fact that it allows for censoring of observations (lack of exact time
of death) and inclusion of time-dependent covariates, and dealing
with non-normal distributions (Woodall et al., 2005). These
features of survival data make it difficult to handle with
commonly-used conventional statistical methods, but ignoring
them will reduce the precision of the estimates (Allison, 2010).
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Consequently, conventional approaches such as Logistic regression
are inadequate for dealing with either censoring or time-dependent
covariates, something at which survival analysis excels (Allison,
2010).

Kleinbaum and Klein (2005) defined two quantitative terms
that should be considered in any survival analysis. These are the
survivor function, denoted by S(t) and the hazard function denoted
by h(t) for the survival time t. The survivor function S(t) gives the
probability that an individual (in our case, a tree) survives longer
than some specified time t: that is, S(t) gives the probability that
the random variable T exceeds the specified time t (Kleinbaum
and Klein, 2005; Woodall et al., 2005; Allison 2010). The hazard
function focuses on failing, that is, on the event occurring because
the hazard function h(t) gives the instantaneous potential per unit
time for death to occur, given that the individual has survived up to
time t. In contrast the survivor function focuses on not failing, that
is, on the event not occurring. In a unique sense, both functions can
be considered as giving the opposite side of the information given
by the other (Kleinbaum and Klein, 2005).

We used two survival modeling approaches in our investiga-
tion: the logistic regression (parametric approach, McCullagh and
Nelder, 1991) for 5-year responses, and the Cox Proportional Haz-
ard, regression (semi-parametric approach, Cox, 1972, 1975; Lee
and Wang, 2003) for censored responses.

The objective of this study is to develop an individual tree mor-
tality model applicable for even-aged pure stands of ponderosa
pine throughout its geographic range in the United States. The
objective is divided into two phase: (1) to build a survival model
for predicting the probability of a tree surviving to the next 5 years
based on plot/tree information measured 5 years before the last
measurement period and (2) to build a survival model to estimate
the probability of a tree surviving longer than a given time period
based on plot/tree information at the first measurement period.
The Cox PH model here is used as an explanatory model but not
as a predictive model, because of its non-parametric distribution
assumption for the survival time. For phase (1), we fitted the Logis-
tic model, and for phase (2), we fitted the Cox Proportional Hazard
(PH) model. For both models, we considered the following groups
of measured candidate explanatory (predictors) variables:

1. Plot spatial information: latitude, longitude, elevation, slope and
aspect.

2. Stand structure information at measurement time: plot basal area,
number of trees per hectare, stand age, average of the five tall-
est trees in the plot (however, if less than five, then we just cal-
culated their average.), site index, site density index, and basal
area per hectare in larger diameter.

3. Tree information at measurement time: DBH, DBH periodic
annual increment, and tree basal area.

2. Methods

2.1. Data

The measurements were made in years ranging from 1938 to
1998. Some plots were measured repeatedly (for example, 1938–
1943–1948–1953; 1963–1967–1971–1979–1984–1989–1994),
and others only once or twice. Several datasets used in this study
were from long-term permanent plots consisting of: (a) levels-of-
growing-stock studies established in the 1960s using a similar
study design with five or six stand density levels replicated three
times (Myers, 1967) and (b) initial spacing and permanent-plot
thinning studies. Individual-tree data were from plots initiated
from both artificial stands and natural stands located in the five
provinces of ponderosa pine in the western United States (Fig. 1)
and initially covering a wide range of size classes. Stands were free,

or mostly free, of competing shrubs that reduce growth of young
ponderosa pine especially in central Oregon and California (Oliver,
1984; Oliver and Ryker, 1990; Cochran and Barrett, 1999). Results
from individual installations of the levels-of-growing-stock studies
have been previously reported (Tables 1 and 2), as were growth
models based on five installations (Oliver and Edminster, 1988;
Uzoh and Oliver, 2006, 2008).

Trees were tagged and repeatedly measured on periods of differ-
ent length (ranging from 2 years to 18 years lag), but about 68% of
the measurement were done every 5 years. Seventy-eight percent
of the plots were measured for more than 10 years. The data result-
ing from this study consisted of 305 plots with a total of 29,449
trees. Of those trees, 28,901 trees were used for fitting the Cox PH
model. Some trees had to be removed from the analysis because
some plots were measured only once, while at others plots, mea-
surements were done in 2-year interval but not in the same years.
Of these, 20,118 trees were used for the logistic model because they
were measured in 5-year intervals. Table A1 in the Appendix shows
the summary of the original dataset and Table A2 shows a summary
of the last 5-year measurement periods. Fig. 2 shows the distribu-
tion of mortality within the study area.

Basic records for each plot included latitude, longitude, eleva-
tion, aspect, slope percent, and plot size. Individual tree measure-
ments included diameter at breast height (DBH) and total height.
Different methods were used at different locations for sampling
tree height. At some locations, every tree height in each plot was
measured; at others, a systematic sample of tree heights were
measured; yet at other locations, height sample trees were ran-
domly selected within 2 in. diameter classes across the range of
tree sizes. Height measurements were repeated on the same trees
(Uzoh and Oliver, 2006). Mortality was noted and the causal agent
investigated. The data for this analysis consists only of the initial,
and the last two measurement periods, called from now on ‘‘Ini-
tial’’, ‘‘Prior’’ and ‘‘Current’’. The two models (the Logit model and
the Cox Proportional Hazard model (Cox PH model)) aim to pre-
dict/explain the current survival response with the information
from the prior or initial period. Therefore, only the values of the
explanatory variables from the initial measurement period, from
the 5-year period prior to the last measurement period and the
current survival status, are used in this analysis.

Many trees in a number of plots suffered competition-induced
mortality. For the Cox PH model, since a tree either died during
an interval or is alive at the end of the study and the year of death
is unknown, we have a case of interval censoring (Allison, 2010).
Some of the measurement periods were of different length, there-
fore, it is possible that the estimated survival probability has some
bias or added imprecision. It is possible that a greater than 10-year
time lag between measurements increases the bias or decreases
the precision of the estimate, however, only 4.3% of all the
28,901 trees had a time-lag greater than 10 years and of these only
1.2% died in those intervals. We fitted the COX model with these
trees removed and the trees and the slopes’ trend of the coeffi-
cients did not change and the deviance residual plots showed the
same pattern as that shown for the whole dataset. As a result,
we chose not to remove the trees from the analysis.

2.2. Statistical analyses

2.2.1. Logistic model for predicting 5-year survival probability
We used the Logistic model from the family of the Generalized

Additive Models (GAMs) (Hastie and Tibshirani, 1990).

2.2.1.1. Logit model.
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