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a b s t r a c t

The mechanical properties of human brain tissue are the subject of interest because of their use in
understanding brain trauma and in developing therapeutic treatments and procedures. To represent the
behavior of the tissue, we have developed hyperelastic mechanical models whose parameters are fitted in
accordance with experimental test results. However, most studies available in the literature have fitted
parameters with data of a single type of loading, such as tension, compression, or shear. Recently, Jin et al.
(Journal of Biomechanics 46:2795�2801, 2013) reported data from ex vivo tests of human brain tissue under
tension, compression, and shear loading using four strain rates and four different brain regions. However,
they do not report parameters of energy functions that can be readily used in finite element simulations. To
represent the tissue behavior for the quasi-static loading conditions, we aimed to determine the best fit of
the hyperelastic parameters of the hyperfoam, Ogden, and polynomial strain energy functions available in
ABAQUS for the low strain rate data, while simultaneously considering all three loading modes. We used an
optimization process conducted in MATLAB, calling iteratively three finite element models developed in
ABAQUS that represent the three loadings. Results showed a relatively good fit to experimental data in all
loading modes using two terms in the energy functions. Values for the shear modulus obtained in this
analysis (897�1653 Pa) are in the range of those presented in other studies. These energy-function
parameters can be used in brain tissue simulations using finite element models.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical behavior of human brain tissue is the subject of
intense scientific research because the results of these studies may
be used, for instance, to analyze trauma or to produce recommen-
dations for improved treatment of diseases. In experimental studies,
brain tissue has shown a nonlinear, viscoelastic, and anisotropic,
mechanical behavior (Feng et al., 2013; Miller and Chinzei, 1997;
Prevost et al., 2011). In addition, it is a highly compliant material,
which makes its mechanical characterization a challenging task.

There have been several experimental studies of human brain
tissue (Chatelin et al., 2012; Donnelly and Medige, 1997; Fallenstein
et al., 1969; Franceschini et al., 2006; Kruse et al., 2008; Nicolle et al.,
2004; Prange and Margulies, 2002; Prange et al., 2000; Sack et al.,
2008, 2009; Schiavone et al., 2009). However, with the exception of
a few of these aforementioned studies (Franceschini et al., 2006;
Prange and Margulies, 2002; Prange et al., 2000), each reported
single-mode experiments, with tests in just tension, compression, or

shear. It has been shown that the elastic parameters of hyperelastic
energy functions that produce a good fit of independent single test
data, such as uniaxial tension or compression, may yield different
predictions under biaxial or three-axial loading (Smith and García,
2013). Hence, it appears to be essential to obtain strain energy
function parameters that can simultaneously fit results of indepen-
dent experiments.

Recently, Jin et al. (2013) reported results of tests on human brain
tissue under uniaxial tension, pure shear, and uniaxial compression
in the cerebral cortex, thalamus, corpus callosum, and corona
radiata. Unfortunately, this valuable set of experimental data was
not fitted with theoretical constitutive equations that can be readily
used in finite element simulations. Hence, the objective of this study
was to obtain parameters of hyperelastic strain energy functions by
fitting the experimental data reported by Jin et al. (2013).

2. Materials and methods

Briefly, Jin et al. (2013) tested 240 human brain tissue specimens under uniaxial
tension (n¼72), uniaxial compression (n¼72), and pure shear (n¼96) up to 50%
nominal strain. Cuboidal samples with a squared section of 14 mm per side and
5 mm thickness were extracted from 9 postmortem human subjects from the
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cerebral cortex, thalamus, corpus callosum, and corona radiata, where the first two
locations were gray matter and the other two are white matter. The specimens were
tested under three strain rates—low (0.5 s�1), medium (5 s�1), and high (30 s�1) —
with load applied on the 14 mm � 14 mm faces (Fig. 1). For the white matter, tests
were conducted along three perpendicular directions defined with respect to fiber
orientation. The results of their study showed no significant differences among
properties for the cerebral cortex, thalamus, and corpus callosum. However, the
corona radiata was found to be stiffer in tension and compression. The only
directional dependence was found in white matter under shear loading.

Following the experimental setup of Jin et al. (2013), three groups were
considered in our analyses. The first corresponded to the gray matter characterized
by the results for the cerebral cortex and thalamus. The second corresponded to the
white matter, including results for the corpus callosum and corona radiata. A third
group was analyzed with the results for the corona radiata only, as this tissue is
significantly stiffer that the others. To exclude viscoelastic effects, we considered only
the slowest strain rate data in our analyses.

Given the size of the samples and the restrictions caused in the fixtures used by
Jin et al. (2013), the experimental stress fields did not exactly correspond to
uniaxial stress or pure shear. In fact, the top and bottom faces of the specimens
under tension and shear were glued to the static and movable parts of the testing
machine, whereas in compression no glue was used to allow free expansion of the
specimens (Jin et al., 2013). Hence, to perform the fitting process, we developed
finite element models using the commercial program ABAQUS (Simulia Corp.,
Providence, RI, USA). The dimensions, shapes, and boundary conditions of the
models were consistent with those reported by Jin et al. (2013).

For the tension test, following a mesh convergence study, a three-dimensional
model composed of 3872 linear brick (C3D8R) elements was used (Fig. 1a). For the
shear and compression tests, following a mesh convergence study, two plane strain
models composed of 280 quadrilaterals (CPS4R) elements were used (Figs. 1b,1c).
These plane models were defined after a comparison of the reaction forces with
those obtained with corresponding three-dimensional models showing differences
less than 1%. To account for the friction that occurred between the plates and the
tissue in the compression test, we examined two plane models: one with a free
slipping condition and a second that included a friction coefficient of 0.09, as
reported by Rashid et al. (2012a). From this comparison, it was determined that the
mean difference in the reaction force from the two models was less than 3.6%, so a
free slipping model was preferred due to the shorter processing time compared to
the model with friction.

Three hyperelastic energy functions were chosen that are available in ABAQUS
and have previously been used to fit single-mode experimental results of brain tissue.
The first strain energy potential considered was the hyperfoam function, defined as
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where λi are the principal stretches; J is the determinant of the deformation
gradient tensor; N is the number of terms; and μi , αi , and βi are material
parameters. The second was the Ogden strain energy potential, defined as
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where λi are the deviatoric principal stretches and Di are material parameters. In
these two strain energy functions, the parameters μi are related to the initial shear
modulus, the parameters αi modify the degree of nonlinearity of the stress-strain
curves, and the parameters Di and βi may be used to adjust the compressibility of
the material.

A unique Poisson's ratio is associated with the parameter D1 of the Ogden
energy function; for the hyperfoam function a different Poisson's ratio is calculated
for each value of βi . To determine a unique, effective value for the Poisson's ratio νef
of the hyperfoam function, we conducted a finite element analysis of a model
under uniaxial loading and infinitesimal strains for each set of the fitted properties.

The third strain energy potential considered was the polynomial strain energy
potential, defined as
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where Cij are material parameters, and I1 and I2 are the first and second deviatoric
strain invariants, defined as
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The initial shear modulus m0 and bulk modulus K0 are given in terms of the
function parameters as

μ0 ¼ 2ðC10þC01Þ ð6Þ

K0 ¼
2
D1

ð7Þ

respectively. Note that the deviatoric stretch ratios, defined as

λi ¼ J�1=3λi ð8Þ
appear in the latter two strain energy functions, as the hyperelastic formulation of
the ABAQUS separates the energy function into the deviatoric and hydrostatic
components.

To find the parameters of the functions that simultaneously fit the three
independent experiments, we defined a target function Ft as the sum of the
absolute deviations between the experimental and model reaction forces at each
strain level (corresponding to 10 strain levels, from 0.05 to 0.5 mm/mm in
increments of 0.05) for tension (t), compression (c) and shear (s). Because of the
differences of the reaction forces magnitude in the different tests, every term of the
target function was normalized by dividing by the mean value of the response.
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The minimization was achieved using the optimization function fminsearch of
MATLAB (Mathworks Inc, Natick, MA, USA) that was implemented to iteratively run
the three finite element models in ABAQUS.

3. Results

An initial pilot study using one term for each of the three strain
energy functions showed a poor fitting of the tension tests. Hence,
two terms (N¼2) were chosen for each the three hyperelastic strain
energy functions.

The hyperfoam, Ogden, and polynomial functions, each with
two terms, yielded a relatively good fit of the experimental tension
(Fig. 2), compression (Fig. 3), and shear data (Fig. 4). The best fit
was attained with the hyperfoam function (R240.97), followed by
the Ogden function (R240.92), and then the polynomial function
(R240.80) (Table 1). In particular, the hyperfoam function pro-
vided a better agreement of the change in curvature shown in the
experimental tension curves (Fig. 2a).

The Poisson's ratios were similar for each of the three strain
energy function, with values of �0.38 for the hyperfoam function,
�0.42 for the Ogden function, and �0.44 for the polynomial
functions (Table 1). The shear moduli from the polynomial func-
tion were 14�39% higher than those from the hyperfoam function,

Fig. 1. Finite element models and boundary conditions adopted for the fitting process of the experimental data reported by Jin et al. (2013) for (a) tension, (b) shear, and
(c) compression.
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