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a b s t r a c t

For nearly a century, articular cartilage has been known for its exceptional tribological properties. For
nearly as long, there have been research efforts to elucidate the responsible mechanisms for application
toward biomimetic bearing applications. It is now widely accepted that interstitial fluid pressurization is
the primary mechanism responsible for the unusual lubrication and load bearing properties of cartilage.
Although the biomechanics community has developed elegant mathematical theories describing the
coupling of solid and fluid (biphasic) mechanics and its role in interstitial lubrication, quantitative gaps in
our understanding of cartilage tribology have inhibited our ability to predict how tribological conditions
and material properties impact tissue function. This paper presents an analytical model of the interstitial
lubrication of biphasic materials under migrating contact conditions. Although finite element and other
numerical models of cartilage mechanics exist, they typically neglect the important role of the collagen
network and are limited to a specific set of input conditions, which limits general applicability. The
simplified approach taken in this work aims to capture the broader underlying physics as a starting point
for further model development. In agreement with existing literature, the model indicates that a large
Peclet number, Pe, is necessary for effective interstitial lubrication. It also predicts that the tensile
modulus must be large relative to the compressive modulus. This explains why hydrogels and other
biphasic materials do not provide significant interstitial pressure under high Pe conditions. The model
quantitatively agrees with in-situ measurements of interstitial load support and the results have
interesting implications for tissue engineering and osteoarthritis problems. This paper suggests that
a low tensile modulus (from chondromalacia or local collagen rupture after impact, for example) may
disrupt interstitial pressurization, increase shear stresses, and activate a condition of progressive surface
damage as a potential precursor of osteoarthritis.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

McCutchen slid cartilage against a large glass flat and was the
first to propose interstitial (weeping) lubrication to explain the
unusual response (McCutchen, 1959). He noted that fluid pressure,
which develops under loading, reduced friction by �10–100�
while boundary lubrication with synovial fluid reduced friction
by �2� . In the joint, interstitial pressurization increases load
capacity (Ateshian et al., 1994), shields the matrix from stresses
(Mow and Lai, 1980), signals the biochemical response (Wong
et al., 2003; Carter et al., 2004), and reduces friction and wear
(McCutchen, 1962; Soltz and Ateshian, 2000; Ateshian, 2009).

Generally speaking, interstitial fluid pressure subsides over
time. Direct measurements of the fluid load fraction have shown

that friction obeys the following relationship with the equilibrium
friction coefficient, meq, and the time-dependent fluid load fraction,
F′ (Krishnan et al., 2004):

μ¼ μeqð1�F′Þ ð1Þ

McCutchen recognized that interstitial lubrication must be
restored in-vivo and proposed that dynamic loading and unloading
was responsible (McCutchen, 1962). However, this hypothesis was
rejected by direct observations of time-dependent friction during
dynamic loading (Krishnan et al., 2005). In 2008, it was discovered
that interstitial lubrication is maintained during sliding when
cartilage is self-mated (Caligaris and Ateshian, 2008). In a follow-
up test, the authors demonstrated that a rigid impermeable
sphere, when slid against cartilage, also maintained low friction.
They proposed that fluid pressure is maintained when hydrated
tissue is continually introduced into the contact; they call this the
migrating contact area (MCA). This discovery explained how fluid
pressure is maintained in-vivo. Based on prior modeling of
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biphasic cylindrical layers in rolling contact (Ateshian and Wang,
1995), Ateshian proposed that fluid load support is sustainable in
MCA when the Peclet number (Pe)⪢1 and negligible when Per1;
Pe¼ Va=ðHakÞ where V is sliding speed, a is the contact radius, Ha

is aggregate modulus, and k is permeability (Ateshian, 2009).
Despite the rapid recent advancements in the field of cartilage

lubrication, there remain major gaps that inhibit our ability to predict
how tribological conditions and material properties impact tissue
function. The state of the art provides a relationship between friction
and fluid load fraction (Krishnan et al., 2004; Ateshian, 2009), but
there remains no analytical expression to quantitatively relate the
Peclet number to the fluid load fraction for MCA sliding conditions.
This paper describes and experimentally supports an analytical model
that relates measureable material properties and controllable mech-
anical conditions to the fluid load fraction and related functional
parameters, including contact radius, effective contact modulus,
contact stress, fluid pressure, friction coefficient, and shear stress.

2. Model

The force response of cartilage to deformation consists of compo-
nents due to elastic stresses and those due to fluid pressure
(McCutchen, 1962; Mow et al., 1980). The coupling of elastic deforma-
tion and fluid flow creates a challenging non-linear contact mechanics
problem. To improve the tractability of the Hertzian contact problem,
we initially treat the solid and fluid mechanics independently.
Although cartilage violates nearly each of Hertz's assumptions, we
find that Hertz's theory provides a reasonable contact model when
the contact diameter is less than the cartilage thickness. The elastic
foundation model is more appropriate in physiological conditions and
the analysis follows an identical strategy.

We develop the Hertz solution over the elastic foundation
solution here because we can test the Hertz solution under
controllable experimental conditions. Consider the indentation of
a rigid impermeable sphere into cartilage as illustrated in Fig. 1.
According to Hertz's theory, the elastic force component, Fe, is the
following function of sphere radius, R, contact modulus (a material
property), Ec0¼E/(1�ν2), and penetration depth, δ¼a2/R:

Fe ¼ 4
3

E
1�υ2

R0:5δ1:5 ¼ 4
3
Ec0R

0:5δ1:5 ¼ 4
3
Ec0a3

R
ð2Þ

Volume-changing deformations like indentation cause inter-
stitial fluid flow. According to Darcy's law, fluid flow through a
permeable medium induces a pressure gradient:

dP
dx

¼ V
k

ð3Þ

where V is the flow speed along a streamline, k is the permeability
of the solid to the fluid of interest, and dP/dx is the pressure
gradient along the streamline. Finite element models (Pawaskar
et al., 2010; Accardi et al., 2011) have demonstrated that the
streamlines during indentation and sliding approximate semi-
circular arcs as shown in Fig. 1. Each streamline starts at the
sphere surface at a distance r from the axis of symmetry with a
speed of _δ in the compression direction. Conserving volume along
each streamline gives the velocity as a function of starting point, r,
and angle, θ:

Vðr; θÞ ¼
_δr

a�ða�rÞ cos ðθÞ ð4Þ

Assuming that the pressure outside the tissue is zero, Darcy's law
can be integrated along each streamline to obtain the pressure acting
on the sphere as a function r. The matrix compacts downward at a
rate _δ under the contact so there is no relative flow at θ¼0. We
estimate the relative flow rate by considering only the transverse
component of V within the contact (i.e. when 0oθoπ/2). In this
case, pressure on the counterbody takes the form:

PðrÞ ¼
Z π=2

0

_δrða�rÞ sin ðθÞ
kða�ða�rÞ cos ðθÞÞdθþ

Z π

π=2

_δrða�rÞ
kða�ða�rÞ cos ðθÞÞdθ ð5Þ

Integrating the pressure distribution yields an estimate of the
fluid pressure force contribution1:

Fp ¼ 1:37
_δa3

k
ffi4

3

_δa3

k
ð6Þ

The fluid load fraction, F′, is the primary metric of interstitial
lubrication. By definition, F′ is the ratio of the fluid pressure
force contribution and the total applied normal force. Inserting
Eqs. (2) and (6) into this definition yields:

F′¼ Fp
FpþFe

¼
4
3
_δa3
k

4
3
_δa3
k þ4

3
Ec0a3
R

¼ Pe
Peþ1

ð7Þ

where Pe� _δR=Ec0k for indentation.
The mechanics of a migrating contact are analogous to those of

indentation. When the sphere in Fig. 1 travels a distance, a, the
tissue is consolidated by δ. Thus, the average deformation rate is:
_δ¼ Vδ=a. By definition from Hertz theory, δ¼ a2=R, so the Peclet
number for sliding becomes: Pe� Va=Ec0k, which is identical to
that reported previously (Ateshian, 2009).

Eq. (7) suggests that F′-1 as _δ-1 and only holds for an infinite
tensile modulus. For real materials, Eq. (7) is limited to an asymptotic
limit that depends on the elastic properties and contact geometry.
Soltz and Ateshian demonstrated that this asymptotic limit for F′ in
unconfined compression is essentially governed by the ratio of
tensile modulus to compressive modulus, En (Soltz and Ateshian,
2000). The same mechanism applies here and is important to
understand. Consider Fig. 2, which illustrates the unconfined com-
pression of a biphasic material. Assume that Poisson's ratio is 0 (Soltz
and Ateshian, 2000, show that this is true to an excellent approx-
imation) and that the deformation shown occurs instantaneously
(flow cannot occur). The deformed shape conserves volume and the
transverse strains are half the normal strain. Soltz and Ateshian use
E�Y and EþY to represent the compressive and tensile moduli,
respectively. The transverse tensile stress on the matrix is: sþ ¼
ðs� =2ÞðEþY=E�Y Þ ¼ ðs� =2ÞEn. If the interface is frictionless, fluid
pressure, P, must balance the tensile stress (globally speaking) and
s� ¼ 2P=En. Therefore, the fluid load fraction is F′¼ P=ðPþs� Þ ¼

Fig. 1. (a) Axismymetric contact model of a rigid sphere indenting cartilage.
Streamlines show likely paths of fluid flow.

1 The approximate constant of 4/3 was misrepresented as 2/3 in our previous
paper (Bonnevie et al., 2012).
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