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a b s t r a c t

This paper presents a model for determining the path of the instantaneous helical axis (IHA) that

optimally represents human planar motions with one functional degree of freedom (fDOF). A human

movement is said to have one fDOF when all degrees of freedom (DOFs) are coordinated such that all the

kinematic variables can be expressed, across movement repetitions, as functions of only one

independent DOF, except for a small natural intercycle variability quantified as lower than a

prespecified value. The concept of fDOF allows taking into account that, due to motor coordination,

human movements are executed in a repeatable manner. Our method uses the measurement of several

repetitions of a given movement to obtain the optimal average IHA path. The starting point is a change

of variables, from time to a joint position magnitude (generally an angle). In this way, instead of

operating with the time-dependent single-valued trajectory of the successive cycles, our model permits

the representation of any motion variable (e.g. positions and their time derivatives) as a cloud of points

dependent on the joint angle. This allows the averaging to be performed over the displacements and

their derivatives before determining the mean IHA path. We thus avoid the nonlinear magnification of

errors and variability inherent in the IHA computation. Moreover, the IHA path can be considered as a

geometric attribute of the joint and the type of motion, rather than of each single movement execution.

An experiment was performed that show the accuracy and usefulness of the method.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The instantaneous helical axis (IHA) has been used to describe
the kinematics of complex joints such as the neck (Woltring et al.,
1994), the lumbar spine (Page et al., 2009b), the knee (Wolf and
Degani, 2007), the shoulder complex (Dempster, 1955) or the
ankle (Leardini et al., 1999).

Most studies based on the IHA operate on the six degrees of
freedom (DOFs) that describe the full possibilities of movement.
However, the DOFs of a complex joint do not vary independently
of each other during the execution of a natural motion. Due to
motor coordination, each person executes a type of movement in a
repeatable way and there are relations between the kinematic
variables. Then, the number of independent variables needed to
represent the movement is lower than six. These independent
DOFs are called functional degrees of freedom (fDOFs) (Li, 2006).
Many movements used in clinical examinations of joint function
are actually very simple and often planar. In some cases, most of
the motion variability can be explained by only one joint variable
(Page et al., 2008), and we can assume a single fDOF.

The existence of a single fDOF does not ensure that a single
path of the IHA will be obtained when several repetitions of the
same movement are performed. Errors, artifacts and natural
intrasubject variability introduce some dispersion in the kine-
matic variables, which is strongly and nonlinearly magnified
when calculating the IHA (Woltring et al., 1994). This leads to
erratic results and negatively affects the estimation of an average
representation of movement (Page et al., 2006b).

In this paper, we propose a robust model to determine the
average path traced by the IHA in planar movements with one
fDOF. Instead of computing the IHA from time-dependent
kinematic variables, we represent the IHA path as a function of
the joint angle variable. This way, repetitions of the same motion
can be efficiently averaged across cycles before determining the
IHA, thus reducing the dispersion of results that appears when
working with instantaneous variables. The model and its effec-
tiveness are illustrated with an experiment.

2. Kinematic model and averaging process

2.1. Kinematic model

The experimental determination of the IHA associated with
joint motion involves analyzing both the position and velocity
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variables of the distal segment relative to the proximal one. The
position analysis provides the coordinates of a point G, RG(t), and
a measure of the orientation, e.g. the attitude vector, h(t)
(Woltring et al., 1994). The velocity analysis provides the velocity
of G, vG(t), and the angular velocity, w(t). The IHA is the line
parallel to w that passes through point H given by:

GHðtÞ ¼wðtÞ � vGðtÞ=w2ðtÞ ð1Þ

(see Fig. 1 for an illustration). If the motion is planar, then we can
expect up to three DOFs. If the condition of having one fDOF is
satisfied, RG may be represented as a function of the joint angle y.
In addition, vG may be expressed as a function of the joint angle
and its derivative (the angular velocity, w):

RG ¼RGðyÞ ð2Þ

w¼
dy
dt

u¼wu ð3Þ

vG ¼
dRG

dy
dy
dt
¼ vSðyÞw ð4Þ

where u is the unit vector perpendicular to the plane of motion
and vS is a standardized velocity representing the displacement of
G per unit of joint rotation. Note that vS does not depend on time
or on speed of motion. Substituting (3) and (4) into (1) yields the
following expression for the location of the IHA:

GHðyÞ ¼ u� vSðyÞ ¼ u� dRGðyÞ=dy ð5Þ

Eq. (5) shows that by performing a change of variables, moving
from the time domain to the angle domain, the IHA can be viewed
as a geometric attribute of the joint and type of movement that
does not depend on the speed of motion. This eliminates a source
of errors, namely the term 1/w2 from Eq. (1).

2.2. Averaging process

In practice, the relation between RG and y is not completely
single-valued, due to the small natural variability across repeti-
tions of the same motion. This makes it necessary to perform

some averaging across cycles, with the aim of obtaining a mean
path of the IHA that provides the best possible representation of
the average movement.

Since the relation between the IHA location and the motion
variables is nonlinear, the direct averaging of the different
individual IHA paths does not ensure average values of the
positions and velocities when the motion is reproduced using
such averaged path. To obtain an IHA path that optimally
represents the mean movement, it is better to first average both
position and velocity variables (RG and vG); these averaged values
will then give us the optimal average IHA path. Data fitting is
required to obtain a mean across cycles of RG(y), denoted by
/RG(y)S, whose derivative is the average across cycles of vS(y),
denoted by /vS(y)S. This problem involves an optimization
procedure with two fitting criteria, and can be suitably solved
using the technique of smoothing with regularization (Ramsay
and Silverman, 2005). The regularization consists of smoothing
the function RG(y) while imposing some conditions on its
derivative dRG/dy. The calculation procedure can be summarized
in the following steps:

(1) Perform a 3D kinematic analysis from measurements of a
cyclic planar motion to obtain the position variables
(RG(t),h(t)) and velocities (vG(t),w(t)) (Page et al., 2009a). To
obtain a robust estimation of helical variables it is advisable to
record several cycles (three or more).

(2) Determine the unit vector perpendicular to the plane of
motion, u, by averaging w(t). The averaging must be
computed separately for back and forth movements otherwise
the average value would vanish. At this point, check the
condition of planar motion by verifying the following
constraints: first, the angle between u and w(t) must be
small; second, the linear and angular velocities must be
sufficiently perpendicular. We denote as y=h �u the joint
variable associated with the planar movement.

(3) Check the condition of one fDOF by applying the procedure
described in Page et al. (2008).

(4) Sort the values of y in ascending order and arrange RG and vG

according to y, thus obtaining RG(y) and vG(y).
(5) Obtain the smooth average across cycles of RG(y), denoted by

/RG(y)S, and its associated derivative, /vS(y)S, following the
double criterion of adjusting position and velocity variables.
This can be accomplished with the procedure based on local
polynomial regression described in Page et al. (2006a). The
level of smoothing is given by the bandwidth parameter h

(Ramsay and Silverman, 2005). Small values of h will provide
high roughness in the estimation of /vSS and therefore large
differences between the measured values of vG(y) and those
estimated from /vS(y)S by Eq. (4). On the contrary, if h is too
high, then there is a bias in both /RG(y)S and /vG(y)S. Thus
the data fitting procedure with regularization can be done by
smoothing RG(y) with the bandwidth h that minimizes the
least square error criterion:

LSEðhÞ ¼
X

vGðyÞ �
dy
dt

/vSðh; yÞS
� �2

ð6Þ

(6) Once optimal values of /RG(y)S and /vG(y)S have been
computed, determine, for each value of y, the IHA as the line
parallel to u that passes through point H(y) given by Eq. (5).
The path of the IHA calculated in this manner corresponds to
the movement averaged across repetitions.

In the rest of the paper, we will refer to this way of determining
the average path of the IHA as the ‘‘geometric approach’’, while
the calculation of the IHA using Eq. (1) will be called the
‘‘instantaneous approach’’. Note that we have assumed that the

Fig. 1. Variables involved in the calculation of the instantaneous helical axis (IHA).

Consider the body depicted in the figure as a distal human segment. Then, all the

represented variables refer to the motion of this distal segment relative to a

proximal one, which is not shown. Point H is the point of the IHA closest to point G.
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