Model projections on the impact of HCV treatment in the prevention of HCV transmission among people who inject drugs in Europe

Graphical abstract

Highlights

- Chronic HCV prevalence and treatment rates among PWID vary widely across Europe.
- HCV treatment scale-up is required in most sites to reduce HCV transmission.
- Increasing OST/NSP coverage enhances HCV treatment prevention benefit.

Authors

Hannah Fraser, Natasha K. Martin, Henrikki Brummer-Korvenkontio, ..., Ruth Zimmermann, Peter Vickerman, Matthew Hickman

Correspondence

hannah.fraser@bristol.ac.uk (H. Fraser)

Lay summary

Measuring the amount of HCV in the population of PWID is uncertain. To reduce HCV infection to minimal levels in Europe will require scale-up of both HCV treatment and other interventions that reduce injecting risk (especially OST and provision of sterile injecting equipment).

Model projections on the impact of HCV treatment in the prevention of HCV transmission among people who inject drugs in Europe

Hannah Fraser^{1,*}, Natasha K. Martin^{2,1}, Henrikki Brummer-Korvenkontio³, Patrizia Carrieri^{4,5}, Olav Dalgard^{6,7}, John Dillon⁸, David Goldberg⁹, Sharon Hutchinson^{10,9}, Marie Jauffret-Roustide^{11,12}, Martin Kåberg¹³, Amy A. Matser^{14,15}, Mojca Matičič^{16,17}, Havard Midgard⁶, Viktor Mravcik^{18,19,20}, Anne Øvrehus²¹, Maria Prins^{14,22}, Jens Reimer^{23,24}, Geert Robaeys^{25,26,27}, Bernd Schulte²⁴, Daniela K. van Santen¹⁴, Ruth Zimmermann²⁸, Peter Vickerman^{1,†}, Matthew Hickman^{1,†}

 ¹Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; ²Division of Global Public Health, University of California, San Diego, San Diego, CA, USA; ³National Institute for Health and Welfare, Helsinki, Finland; ⁴Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France; ⁵ORS PACA, Observatoire
Régional de la Santé Provence-Alpes-Côte d'Azur, Marseille, France; ⁶University of Oslo, Oslo, Norway; ⁷Akershus University Hospital, Lørenskog, Norway; ⁸University of Dundee, Dundee, Scotland, UK; ⁹Health Protection Scotland, Glasgow, Scotland, UK; ¹⁰Glasgow Caledonian University, Glasgow, Scotland, UK; ¹¹French Institute for Public Health Surveillance, St. Maurice, France; ¹²CERMES3 (Inserm U988/UMR CNRS 8211/EHESS/ Paris Descartes University), Paris, France; ¹³Department of Medicine, Huddinge, Division of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; ¹⁴Public Health Service of Amsterdam, Amsterdam, The Netherlands; ¹⁵University Medical Center Utrecht, Utrecht, The Netherlands; ¹⁶University of Ljubljana, Ljubljana, Slovenia; ¹⁷University Medical Centre Ljubljana, Ljubljana, Slovenia; ¹⁸National Monitoring Centre for Drugs and Drug Addiction, Prague, Czech Republic; ¹⁹Charles University and General University Hospital in Prague, Prague, Czech Republic; ²⁰National Institute of Mental Health, Klecany, Czech Republic; ²¹Odense University Hospital, Odense, Denmark; ²²Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; ²³HealthNorth, Bremen, Germany; ²⁴University of Hamburg, Hamburg, Germany; ²⁵Ziekenhuis Oost-Limburg, Genk, Belgium; ²⁶Hasselt University, Diepenbeek, Belgium; ²⁷University Hospital Leuven, Leuven, Belgium; ²⁸Robert Koch Institute, Berlin, Germany

See Editorial, pages 383–385

Background & Aims: Prevention of hepatitis C virus (HCV) transmission among people who inject drugs (PWID) is critical for eliminating HCV in Europe. We estimated the impact of current and scaled-up HCV treatment with and without scaling up opioid substitution therapy (OST) and needle and syringe programmes (NSPs) across Europe over the next 10 years.

Methods: We collected data on PWID HCV treatment rates, PWID prevalence, HCV prevalence, OST, and NSP coverage from 11 European settings. We parameterised an HCV transmission model to setting-specific data that project chronic HCV prevalence and incidence among PWID.

Results: At baseline, chronic HCV prevalence varied from <25% (Slovenia/Czech Republic) to >55% (Finland/Sweden), and <2% (Amsterdam/Hamburg/Norway/Denmark/Sweden) to 5% (Slovenia/Czech Republic) of chronically infected PWID were treated annually. The current treatment rates using new direct-acting antivirals (DAAs) may achieve observable reductions in chronic prevalence (38–63%) in 10 years in Czech Republic, Slovenia, and Amsterdam. Doubling the HCV treatment rates will reduce prevalence in other sites (12–24%; Belgium/Denmark/Hamburg/ Norway/Scotland), but is unlikely to reduce prevalence in Sweden and Finland. Scaling-up OST and NSP to 80% coverage with current treatment rates using DAAs could achieve

* Corresponding author. Address: Population Health Sciences, Oakfield House, Oakfield Grove, Bristol, England, BSS 2BN, UK, Tel.: +44 117 3310140.

E-mail address: hannah.fraser@bristol.ac.uk (H. Fraser).

[†] Peter Vickerman and Matthew Hickman are Joint Last Author.

observable reductions in HCV prevalence (18–79%) in all sites. Using DAAs, Slovenia and Amsterdam are projected to reduce incidence to 2 per 100 person years or less in 10 years. Moderate to substantial increases in the current treatment rates are required to achieve the same impact elsewhere, from 1.4 to 3 times (Czech Republic and France), 5–17 times (France, Scotland, Hamburg, Norway, Denmark, Belgium, and Sweden), to 200 times (Finland). Scaling-up OST and NSP coverage to 80% in all sites reduces treatment scale-up needed by 20–80%.

Conclusions: The scale-up of HCV treatment and other interventions is needed in most settings to minimise HCV transmission among PWID in Europe.

Lay summary: Measuring the amount of HCV in the population of PWID is uncertain. To reduce HCV infection to minimal levels in Europe will require scale-up of both HCV treatment and other interventions that reduce injecting risk (especially OST and provision of sterile injecting equipment).

© 2017 European Association for the Study of the Liver. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Chronic hepatitis C virus (HCV) infection is a leading cause of liver disease and morbidity, causing more deaths than HIV in the United States and other high-income countries.^{1–4} Preventing HCV transmission among people who inject drugs (PWID) is critical for averting future liver disease in Europe and elsewhere⁵ and new HCV infections in this group.⁶ Primary prevention through opioid substitution therapy (OST) and high-coverage needle

Keywords: Hepatitis C; PWID; Opioid substitution therapy; Direct-acting antivirals. Received 17 December 2016; received in revised form 2 October 2017; accepted 8 October 2017; available online 8 January 2018

Download English Version:

https://daneshyari.com/en/article/8729233

Download Persian Version:

https://daneshyari.com/article/8729233

Daneshyari.com