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Pulse wave velocity (PWV) is often used as a clinical index of aging, vascular disease, or age related
hypertension. This practice is based on the assumption that a higher wave speed indicates vascular
stiffening. This assumption is well grounded in the physics of pulsatile flow of an incompressible fluid where

Keywords: it is fully established that a pulse wave travels faster in a tube of stiffer wall, the wave speed becoming

Pulse wave velocity infinite in the mathematical limit of a rigid wall. However, in this paper we point out that the physical

Wave speed principal of higher pulse wave velocity in a stiffer tube is strictly valid only when the wall is free from

Xe:héril“g I outside constraints, which in the physiological setting is present in the form of tethering of the vessel wall.
rterial wa

The use of PWV as an index of arterial stiffening may thus lose its validity if tethering is involved. A solution
of the problem of vessel wall mechanics as they arise from the physiological pulsatile flow problem is
presented for the purpose of resolving this issue. The vessel wall is considered to have finite thickness with
or without tethering and with a range of mechanical properties ranging from viscoelastic to stiff. The results
show that, indeed, while the wave speed becomes infinite in the mathematical limit of a rigid free wall, the
opposite actually happens if the vessel wall is tethered. Here the wave speed actually diminishes as the
degree of tethering increases. This dichotomy in the effects of tethering versus stiffening of the arterial wall
may clearly lead to error in the interpretation of PWV as an index of vessel wall stiffness. In particular, a
normal value of PWV may lead to the conclusion that vessel wall stiffening is absent while this value may in
fact have been lowered by tethering. In other words, the diagnostic test may lead to a false negative
diagnosis. Our results indicate that the reason for which PWV is lower in a tethered wall compared with that
in a free wall of the same stiffness is that the radial movements of the wall are greatly reduced by tethering.
More precisely, the results show that PWV depends strongly on the ratio of radial to axial displacements and
that this ratio is much lower in a tethered wall than it is in a free wall of the same stiffness.
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1. Introduction

Mechanics of the arterial wall have often been pursued sepa-
rately from the fluid flow problem within the arterial lumen. The
fluid flow problem has generally been considered in full but, because
of the inherent difficulties, it has so far been combined with only a
thin wall as a boundary condition (Atabek, 1968; Womersley, 1957).
More recently, the mechanics of a thick wall have been considered
but, again because of the analytical difficulties involved, this was
only possible with partial coupling at the fluid—wall interface in the
sense of simply imposing the boundary conditions at the interface
rather than allowing these conditions to emerge naturally from the
dynamics of the two media (Humphrey and Na, 2002; Hodis and
Zamir, 2008, 2009a, 2009b).
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Solution of the pulsatile fluid flow problem fully coupled to a
thick arterial wall is important because it represents the physiolo-
gical situation more realistically and, in particular, because including
the wall thickness makes it possible to deal with the issues of
tethering and of mechanical stiffness of the wall more fully. One of
the most important issues which has yet to be resolved is that of the
wave speed in a stiff/rigid free wall versus that in a viscoelastic but
fully tethered wall. While in a rigid free wall the wave speed is
infinite, the corresponding wave speed in a non-rigid but fully
tethered wall has yet to be determined. It has been suggested that it
is in fact finite and small rather than infinite (Atabek, 1968; Cox,
1968; Misra and Choudhury, 1984; Taylor, 1959), thus leading to a
wide dichotomy between the two situations.

Determination of the wave speed in these two situations is
important because the wave speed is often used as a clinical index of
aging or disease. The assumption on which this practice is based is
that a higher wave speed indicates vascular stiffening. This assump-
tion may lead to false negative results if tethering is involved
because, as stated above, it is suspected that tethering may actually
lower the wave speed. The purpose of the present paper is to
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present the results of a solution of the problem of vessel wall
mechanics as they arise from the physiological pulsatile flow
problem. The vessel wall is considered to have finite thickness with
or without tethering and with a range of mechanical properties
ranging from viscoelastic to stiff, thus providing the grounds for
resolving these issues. The words “stiff” or “stiffening” here and
throughout the paper shall be used to describe a degree of elasticity
or viscoelasticity in which the modulus of elasticity is high but finite.
The word “rigid” shall be reserved for the mathematical limit in
which the modulus of elasticity is infinite. In this paper we do not
consider intermediate degrees of tethering, thus the word “tethered”
shall mean fully tethered—the outer boundary of the vessel wall in
this case is totally constrained by surrounding tissue.

2. Materials and methods

Our plan is to obtain a general solution for displacements within the vessel wall,
then combine this with the classical solution for pulsatile flow within the vessel
lumen, and finally apply compatibility conditions at the fluid-wall interface to
determine the arbitrary constants. The process amounts to solving the so called
“frequency equation” (Womersley, 1957; Zamir, 2000) which in the past has been
solved for an infinitely thin wall but here is being solved for a wall of finite thickness.
For simplicity, the analysis to follow is based on a single harmonic flow, but the final
results presented in the figures are based on a generalization of the analysis to
encompass 10 harmonics of a typical cardiac waveform (Zamir, 2005) and physio-
logical parameters given in Table 1. The fluid is assumed to be Newtonian and
incompressible, and the vessel wall material is assumed to be homogeneous and
viscoelastic using the fractional derivative model of Craiem and Armentano (2007) in
which the modulus of viscoelasticity E*, normalized in terms of the static elastic
modulus Ep (=411 kPa), is given by

E'(w) = E*(w)/Eo = Ef + 171" 200 -1, 72 off 1)

where Efis a (constant) fraction of static elasticity, w is frequency (rad/s), n,, , are
viscous factors and «, f§ are derivative orders. In the results to follow we have taken
E=0.1, 01, 10; «=0.11,0,0; f=0.8,0,0; n,=0.13,0.16,0.73((rad/s)"*); and
Ny = 04003,04]6,0.73((rad/s)’”) for viscoelastic, elastic, and stiff wall materials,
respectively.

2.1. Wall displacements

Consider a straight thick-walled circular cylindrical segment of a blood vessel
where the wall materials is assumed to be incompressible and viscoelastic. The
analysis to follow is restricted to linear theory (small strains) but the stress-strain
relationship is considered nonlinear. Using a cylindrical polar coordinate system with
x along the vessel axis, r in radial direction and 0 in circumferential direction, and
assuming axisymmetry (no angular variation), then the general solution for displace-
ments within the wall thickness is given by (Hodis, 2010)
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where w is the fundamental frequency, t is time, &, 7 are displacements in the x and r
direction, respectively, I; and K; are the Modified Bessel functions of first and second
kind, respectively, of order i (i=0,1), A;_4 are constants to be determined and
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with c the fluid wave speed and p,, is the wall density.

Table 1
Physiological parameters on which the results are based, with E*(w) based on a
frequency of 10 rad/s.

Viscoelastic material E*|Ep =0.28+0.04i

Elastic material E*[Ep= 0.41

Stiff material E*|Ey = 2.5

Static elastic modulus Eo= 411 KPa

Fluid pressure P=13.3 KPa

Fluid viscosity 1=0.04 dynes s/cm?
Lumen radius a=1cm

Wall thickness h=0.1a

Fluid density py=1.055 g/cm3
Wall density pw=11g/cm’

2.2. Fluid flow

The classical solution of the fluid flow problem in terms of pressure p and axial
and radial velocities, u and v, respectively, is given by (Cox, 1968; Womersley, 1957)

P = Afp(iymei 7
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u
and py is fluid density, u is fluid viscosity and B and C are constants to be deter-

mined. Jo and J; are Bessel functions of first kind of order 0 and 1, respectively.

2.3. Compatibility conditions

To provide compatibility between displacements within the wall thickness
and flow within the vessel lumen, the following conditions are imposed:

(i) axial and radial fluid and wall velocities are equal at the fluid-wall interface;
(ii) axial (shear) and radial (normal) stresses within the fluid and the vessel wall
are equal at the fluid-wall interface

These conditions can be expressed in terms of wall displacements &1 and fluid
velocities u, v as follows:

U= %f r=a
v= %’Z r=a
oV ou on o ®
,u[a +§} =E* [5 +§], r=a
7p+2u% = 7Q+2E*%, r=a
where Q is the so called mechanical pressure = —(+0xx+0g9)/3.

2.4. Outer boundary conditions

In the fully tethered case it is assumed that the displacements at the outer
layer are zero, therefore the boundary conditions are

Ea+hxt)=0
{ n@a+hx,t)=0 @

In the case of a free wall, we use the approach introduced in Hodis and Zamir
(2009b) which requires that if the wall thickness is extended to infinity, the
following conditions must be satisfied in the limit:
{ rlim E(rx,t)=0

}Lrglon(r,x,t) =0 ®

3. Results

The coupled fluid-wall equations (Egs. (2) and (4)) with boundary
conditions for a fully tethered wall (Eqs. (6) and (7)) lead to the
homogeneous system of six equations (Eq. (17)) given in Appendix 1.
Similarly, the boundary conditions for a free wall (Egs. (6) and (8))
lead to the corresponding system in Eq. (18). There are six equations
in each case for the six unknown constants B, C, Aj_ 4.

3.1. Fluid wave speed (PWV)

For nontrivial values of the unknown constants B, C, A;_4 in
Egs. (17) and (18), the determinant of the coefficients in each
system is set equal to zero, that is

4;=0, (i=01) 9
where A4 is the determinant of the coefficients in Eq. (17) and 4, is
the determinant of the coefficients in Eq. (18). The result in each

case is the so called “frequency equation” for the complex wave
speed c.
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