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Associating musculoskeletal models to motion analysis data enables the determination of the muscular

lengths, lengthening rates and moment arms of the muscles during the studied movement. Therefore,

those models must be anatomically personalized and able to identify realistic muscular paths. Different

kinds of algorithms exist to achieve this last issue, such as the wired models and the finite elements

ones. After having studied the advantages and drawbacks of each one, we present the convex wrapping

algorithm. Its purpose is to identify the shortest path from the origin to the insertion of a muscle

wrapping over the underlying skeleton mesh while respecting possible non-sliding constraints. After

the presentation of the algorithm, the results obtained are compared to a classically used wrapping

surface algorithm (obstacle set method) by measuring the length and moment arm of the

semitendinosus muscle during an asymptomatic gait. The convex wrapping algorithm gives an

efficient and realistic way of identifying the muscular paths with respect to the underlying bones mesh

without the need to define simplified geometric forms. It also enables the identification of the centroid

path of the muscles if their thickness evolution function is known. All this presents a particular interest

when studying populations presenting noticeable bone deformations, such as those observed in

cerebral palsy or rheumatic pathologies.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Muscle–tendon lengths, their lengthening rates as well as their
moment arms, are parameters of great utility for clinical interpreta-
tion purposes. These parameters depend on the paths that the
muscles follow. It is thus necessary to determine accurately
muscular paths during movement. The position of the muscles
being inaccessible to direct measurement, various methods were
proposed in order to evaluate as well as determine possible paths
during the movement studied. They can be split into two categories:
the wired models and the finite elements models.

Each of these categories contains different algorithms of
variable complexity for determining muscular paths. The objec-
tives common to all of these models are firstly, to respect the
anatomy as accurately as possible from the muscle origin to its
insertion, as it wraps around the bone, and, secondly, respecting
anatomical via-points like trochlea or retinaculi. Respecting these
constraints, and considering the muscle as a contractile organ, all

these models are driven by the common principle of finding the
shortest possible path.

The wired models include ‘‘straight line’’ algorithms,
‘‘via-points’’ algorithms, ‘‘wrapping surface’’ algorithms and
‘‘dynamic via-points’’ algorithms.

The ‘‘straight line’’ algorithms are the simplest and oldest ones
(Inman, 1947). They are unsuitable for the modeling of numerous
muscles that wrap around diverse anatomical structures. They are
nevertheless currently used to generate comparative data to
evaluate new algorithms and to model the direct paths of certain
mono-articular muscles.

‘‘Via-points’’ algorithms force the muscles to pass through
imposed points (Delp et al., 1990). They are particularly useful for
modeling the change of direction of certain muscles on structures
such as the retinaculi.

The models characterized as ‘‘wrapping surface’’ algorithms
constituted an important step forward in the modeling of muscle
paths (Garner and Pandy, 2000; Delp and Loan, 2000; Van der
Helm et al., 1992). They allow a realistic modeling of the path of
certain muscles over elementary geometrical entities (spheres,
cylinders or ellipsoids) during movement. The thickness of the
muscle/tendon can be taken into account by expanding the
simple geometric form, with the limitation that the transverse
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cross-sectional size of the muscles has to be closely approximated
in order to determine accurately the moment arms. This type of
algorithm was validated on anatomical specimen for the semi-
tendinosus, semimembranosus, gracilis and psoas muscles.

More recently, ‘‘dynamic via-points’’ algorithms were a general-
ization of the ‘‘via-points’’ models in three-dimensional (3D)
situations, with (or without) consideration of the deflection of the
muscles on via-points, according to the position of various skeletal
segments (Carman and Milburn, 2005). We can include in these
algorithms those proposed for determining the paths of ligaments.
In order to identify the path of the carpus triangular ligament, Marai
et al. (2004) suggest handling this question as an optimization
problem solved by a sequential quadratic programming method. The
objective function involves finding the shortest path. The constraints
consist in not penetrating the underlying bone mesh.

Algorithms based on finite elements modeling appeared more
recently. The ‘‘host mesh’’ (Fernandez et al., 2005) and the ‘‘complex
mesh’’ (Blemker and Delp, 2005) models use 3D data collected by
magnetic resonance imaging (MRI). They deform the muscles in a
bounding box while conserving a quasi-constant volume. These
models are very realistic, but, on the other hand, require substantial
computing times of about 5–10 h on Silicon Graphics Origin 3800
processors with shared memory (Blemker and Delp, 2005). They also
entail access to the personal MRI data of the studied subject.

The ‘‘wrapping surface’’ models do not strictly respect the
constraints related to bone geometry. Indeed, they use simple
geometrical forms such as spheres, cylinders and ellipsoids to
model the wrapping of muscles over the bones. On the other
hand, they allow the centroid path of the muscles to be closely
approximated by increasing the size of these regular-shaped rigid
bodies. The bodies have a certain thickness corresponding to the
centroid cross-section which, in turn, is related to the wrapping
surface. However, the personalized definition of these regular-
shaped rigid bodies is not always coherent with the structural
variety of the skeleton, as is observed in the case of cerebral palsy
or rheumatic pathologies.

The solution proposed by Marai et al. (2004) is interesting
because it uses the bone mesh as a wrapping surface, conferring
an anatomical realism on this method.

Most of these muscle path modeling algorithms seek to define
the shortest paths in spaces containing obstacles. This is a
classical problem in robotics. A survey of the substantial literature
on the shortest-path problem can be found in Yap (1987).
Solutions proposed in robotics are based on the methods of
computational geometry (Sharir and Schorr, 1986; Papadimitriou,
1985; Clarkson, 1987; Balstan and Sharir, 1988), graph search-
based algorithms (Kiryati and Székely, 1993), differential geome-
try and hybrid techniques (Beck et al., 1986; Kimmel and Kiryati,
1996; Marai et al., 2004). The type of technique used depends
primarily on the assumed structure of the search space (poly-
hedral or continuous surfaces).

Taking into account the ‘‘wrapping surface’’ algorithm ellipsoid
method, the ‘‘dynamic via-points’’ algorithm and Marai’s algorithm
which uses skeleton mesh, the present authors thus developed the
‘‘convex wrapping algorithm’’ to determine the muscular paths, with
the following objective: ‘‘Find the shortest path between the insertion
and the origin of a muscle wrapping over the skeleton bone mesh
while respecting possible non-sliding constraints’’. This algorithm
directly employs exact bone geometry, not simple geometrical forms,
as the object of envelopment. To this end, it is an original application
of a method which has the same fundamental objective as algorithms
already described for other applications in robotics and computer
science, such as those reviewed in Agarwal et al. (2009), Mitchell
(2000), Mitchell and Sharir (2004), Cook IV and Wenk (2009),
Maheshwari and Wuhrer (2009) and Schreiber and Sharir (2008). This
algorithm is detailed in Section 2. It is then compared with the

‘‘straight line’’ method and ‘‘wrapping surface’’ algorithm, by
measuring the length and moment arm of the semitendinosus
muscle during asymptomatic gait.

2. Methods

The ‘‘convex wrapping algorithm’’ is used on a mesh model of the bones of the

skeleton to determine the muscle paths. The bone mesh data used come from

CT-Scan data supplied by the European project VAKHUM (Contract #IST-1999-

10954) (subject006). Every skeleton segment is scaled to the subject of the study

by a homothetic transformation based on the ratio, subject/VAKHUM segment

lengths. The morphological adaptation of the axial torsion of thighbones and tibias

is based on the data obtained by well-validated clinical evaluations (Staheli et al.,

1985; Davids et al., 2002; Jacquemier et al., 2008), using state-of-the-art

algorithms (Delp et al., 1990; Schutte et al., 1997; Delp et al., 1990; Arnold and

Delp, 2001; Arnold et al., 2000). Each time, after an iterative solidification of

segment lengths, the position and the orientation of every bone are determined by

the homogeneous matrix of the segments to which they belong. Thanks to the high

resolution of the CT-scan data used, the insertion sites were specified manually.

The main stage of the ‘‘convex wrapping algorithm’’ consists in determining

the convex envelope gathering the whole range of physiologically acceptable

paths. The convex envelope is the smallest surface covering the skeleton from the

origin point A to the insertion point B of the muscle (Fig. 1a). The last step is to

determine the shortest path between points A and B. To speed up the resolution,

while including non-sliding constraints on the surface of the skeleton, a prism

containing the space of the possible muscular paths is defined.

The ‘‘convex wrapping algorithm’’ is described as follows, while referring to Fig. 1:

� Firstly, the half-space (H) containing all the possible paths is defined (Eq. (1))

by building a reference frame RH using vector V
!
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The solution set (H) is restricted to the half-space defined by the plane ð u
!

, v
!
Þ

and the normal vector w
!

.

� The second stage is optional depending on the type of constraint:
J Case ‘‘2 non-sliding constraints’’: 2 points P1 and P2 represent non-sliding

lateral constraints. Those points belong to (H) is first ascertained. Any P

point has a projection P0 on the line AB. Therefore, if w
! dP0P

�!
40, then P

belongs to (H). Then:

– If P1 and P2 belong to (H), then the solution prism is defined by the

edge AB and the 2 faces passing through AB and, respectively, through

the points P1 and P2.

– If P1 or P2 do not belong to (H), then one moves to the case ‘‘1 non-

sliding constraint’’.

– If P1 neither P2 belong to (H), then one moves to the case ‘‘0 non-sliding

constraints’’.
J Case ‘‘1 non-sliding constraint’’: P1 is the single lateral non-sliding

constraint. The objective is to find out if it belongs to (H): if w
! dP01P1

��!
40,

then P1 belongs to (H). Then:

– If P1 belongs to (H), then the prism solution is defined by the edge AB

and the face passing through AB and through the point P1 on the one

hand and, on the other hand, the face whose angle b with vector w
!

is

arbitrarily defined (usually p=6).

– If P1 does not belong to (H), then one moves to the case ‘‘0 non-sliding

constraints’’.
J Case ‘‘0 non-sliding constraints’’

The prism solution is defined by the edge AB and the faces passing through

the edge AB, whose angle g is arbitrarily defined (usually p=3) and is

centered on vector w
!

as a bisector.

– The set M whose elements are the pi points of the skeleton mesh that

are contained inside the solution prism is defined. Then the convex

envelope C of these points, including A and B, is calculated. It is the

intersection of all convex sets containing M. For N points p1, y, pN, the

convex hull C is defined by

C ¼
XN

i ¼ 1

lipi : li Z0 for all i and
XN

i ¼ 1

li ¼ 1

( )
ð3Þ

This calculation is made using the ‘‘Qhull algorithm’’ (Barber et al., 1996).
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